The scale factor that Thea uses to go from Rectangle Q to Rectangle R is equal to 6.
<h3>What is the scale factor from rectangle Q to rectangle R?</h3>
In geometry, the scale factor is a ratio of the resulting length to the initial length. Since the area of the square is equal to the square of its side length, then the scale factor is equal to:
k² = A' / A
k = √(A' / A)
Where:
- k - Scale factor
- A' - Area of the rectangle R.
- A - Area of the rectangle Q.
If we know that A = 2 and A' = 72, then the scale factor is:
k = √(72 / 2)
k = √36
k = 6
Then, the scale factor that Thea uses to go from Rectangle Q to Rectangle R is equal to 6.
To learn more on scale factors: brainly.com/question/22312172
#SPJ1
Answer:
Yes
Step-by-step explanation:
Because its the square root of 12
Answer:
The answer to your question is:
Step-by-step explanation:
1.-






2sec
2.-
sec²x - tanxsecx






Answer:
the answer is B
Step-by-step explanation:
<h3><u>Question:</u></h3>
The perimeter of a rectangle is 34 units. Its width W is 6.5 units.
Write an equation to represent the perimeter in terms of the length L, and find the value of L
<h3><u>Answer:</u></h3>
The length of rectangle is 10.5 units
<h3><u>
Solution:</u></h3>
Given that,
Perimeter of rectangle = 34 units
Width of rectangle = 6.5 units
Let "L" be the length of rectangle
<em><u>The perimeter of rectangle is given by formula:</u></em>
Perimeter = 2(length + width)
<em><u>Substituting the values we get,</u></em>

Thus the equation is found
<em><u>Solve for "L"</u></em>

Thus length of rectangle is 10.5 units