Marcus has created a budget for his upcoming trip to the theme park. Admission is 40% of the budget. He plans to spend 32% of his money on food, 23% on souvenirs, and save 5% for emergencies. He knows the admission will be $6 less than he will spend on food and souvenirs. How much money will Marcus need to take to the park?
clck my profile and answer my question
A(-7,-4) B(-2,0)
√[(x'-x)^2+(y'-y)^2]
√(-2-(-7)^2+(0-(-4)^2
√(5^2)+(4^2)
√25+16
√41
the distance is approximately 6.4 units
Actually, when you know 2 sides and an included angle, you use the Law of Cosines. (and we don't know if theta is an included angle).
Solving for side c
c^2 = a^2 + b^2 -2ab * cos(C)
c^2 = 36 + 16 - 2*6*4 * cos(60)
c^2 = 52 -48*.5
c^2 = 28
c = 5.2915
Using the Law of Sines
side c / sin(C) = side b / sin (B)
5.2915 / sin(60) = 4 / sin (B)
sin(B) = sin(60) * 4 / 5.2915
sin(B) = 0.86603 * 4 / 5.2915
<span><span>sin(B) = 3.46412
</span>
/ 5.2915
</span>
<span><span><span>sin(B) = 0.6546571451
</span>
</span>
</span>
Angle B = 40.894 Degrees
sin (A) / side a = sin (B) / side b
sin (A) = 6 * sin (40.894) / 4
sin (A) = 6 * 0.65466 / 4
sin (A) = .98199
angle A = 79.109 Degrees
angle C = 60 Degrees
Answer: 125/242
Step-by-step explanation: Probability is favorable outcomes over all outcome, since there were 250+234 total outcome, and 250 were favorable (girls), then the probability is 250/250+234=250/484=125/242