Answer:
The molar mass of the gas is 44 g/mol
Explanation:
It is possible to solve this problem using Graham's law that says: Rates of effusion are inversely dependent on the square of the mass of each gas. That is:

If rate of effusion of nitrogen is Xdistance / 48s and for the unknown gas is X distance / 60s and mass of nitrogen gas is 28g/mol (N₂):

6,61 = √M₂
44g/mol = M₂
<em>The molar mass of the gas is 44 g/mol</em>
<em></em>
I hope it helps!
We have to know the molarity of solution obtained when 5.71 g of Na₂CO₃.10 H₂O is dissolved in water and made up to 250 cm³ solution.
The molarity of solution obtained when 5.71 g of sodium carbonate-10-water (Na₂CO₃.10 H₂O) is dissolved in water and made up to 250.0 cm^3 solutionis: (A) 0.08 mol dm⁻³
The molarit y of solution means the number of moles of solute present in one litre of solution. Here solute is Na₂CO₃.10 H₂O and solvent is water. Volume of solution is 250 cm³.
Molar mass of Na₂CO₃.10 H₂O is 286 grams which means mass of one mole of Na₂CO₃.10 H₂O is 286 grams.
5.71 grams of Na₂CO₃.10 H₂O is equal to
= 0.0199 moles of Na₂CO₃.10 H₂O. So, 0.0199 moles of Na₂CO₃.10 H₂O present in 250 cm³ volume of solution.
Hence, number of moles of Na₂CO₃.10 H₂O present in one litre (equal to 1000 cm³) of solution is
= 0.0796 moles. So, the molarity of the solution is 0.0796 mol/dm³ ≅ 0.08 mol/dm³
Answer:

Explanation:
Hello,
In this case, the first step is to compute the molar mass of carbon dioxide as shown below, considering it has one carbon atom and two oxygen atoms:

It is important to notice it is the mass in one mole of such compound. Afterwards, we need to use the Avogadro's number to compute the how many moles are in the given molecules of carbon dioxide as shown below:

Finally, the mass by using the molar mass:

Best regards.
Based on the charge on the aluminium ion, 0.9 g of aluminium are deposited by 0.1 F of electricity.
<h3>What is electrolysis?</h3>
Electrolysis is the decomposition of a substance known as an electrolyte when electric current is passed through it.
The mass and hence moles an electrolyte deposited when current is passed through it depends on the charge on the ion.
Aluminium ion has a charge of +3 and requires 3F of electricity to deposit 1 mole or 27 g of aluminium
0.1 F will discharge = 0.1/3 × 27 g of aluminium
mass of aluminium deposited = 0.9 g of aluminium.
Therefore, 0.9 g of aluminium are deposited by 0.1 F of electricity.
Learn more about electrolysis at: brainly.com/question/26050361
The mass of oxygen reacted/required in this reaction is obtained as 48g.
<h3>What is stoichiometry?</h3>
The term stoichiometry has to do with mass- volume or mass - mole relationship which ultimately depends on the balanced reaction equation.
Now, we have the reaction; S + O2 ------>SO2
If 1 mole of sulfur dioxide contains 22.4 L
x moles of sulfur dioxide contains 33.6L
x = 1.5 moles of sulfur dioxide.
Since the reaction is 1:1, the number if moles of oxygen required/reacted is 1.5 moles.
Mass of oxygen required/reacted = 1.5 moles * 32 g/mol = 48g
Learn more anout stoichiometry: brainly.com/question/9743981