Answer:
a) ![P(492](https://tex.z-dn.net/?f=%20P%28492%3CX%3C512%29%20%3D%20P%28%5Cfrac%7B492-502%7D%7B10.54%7D%20%3CZ%3C%5Cfrac%7B512-502%7D%7B10.54%7D%29%20%3D%20P%28-0.949%20%3C%20Z%3C%200.949%29)
And we can use excel or the normal standard table to find this probability:
![P(-0.949 < Z< 0.949)= P(Z](https://tex.z-dn.net/?f=%20P%28-0.949%20%3C%20Z%3C%200.949%29%3D%20P%28Z%3C0.949%29%20-P%28Z%3C-0.949%29%20%3D0.8287-0.1713%3D0.6574%20)
b) ![P(505](https://tex.z-dn.net/?f=%20P%28505%3CX%3C525%29%20%3D%20P%28%5Cfrac%7B505-515%7D%7B10.54%7D%20%3CZ%3C%5Cfrac%7B525-505%7D%7B10.54%7D%29%20%3D%20P%28-0.949%20%3C%20Z%3C%201.898%29)
And we can use excel or the normal standard table to find this probability:
![P(-0.949 < Z< 1.898)= P(Z](https://tex.z-dn.net/?f=%20P%28-0.949%20%3C%20Z%3C%201.898%29%3D%20P%28Z%3C1.898%29%20-P%28Z%3C-0.949%29%20%3D0.9712-0.1713%3D0.7998%20)
c) ![P(484](https://tex.z-dn.net/?f=%20P%28484%3CX%3C504%29%20%3D%20P%28%5Cfrac%7B484-494%7D%7B10%7D%20%3CZ%3C%5Cfrac%7B504-494%7D%7B10%7D%29%20%3D%20P%28-1%20%3C%20Z%3C%201%29)
And we can use excel or the normal standard table to find this probability:
![P(-1 < Z< 1)= P(Z](https://tex.z-dn.net/?f=%20P%28-1%20%3C%20Z%3C%201%29%3D%20P%28Z%3C1%29%20-P%28Z%3C-1%29%20%3D0.8413-0.1587%3D0.6827%20)
Explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Part a
Let X the random variable that represent the scores for critical reading of a population, and for this case we know the distribution for X is given by:
Where
and
We select a sample of size n=90, since the distribution for X is normal then the distribution for the sample size is also normal
![\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}}=\frac{100}{\sqrt{90}}=10.54)](https://tex.z-dn.net/?f=%5Cbar%20X%20%5Csim%20N%28%5Cmu%2C%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%3D%5Cfrac%7B100%7D%7B%5Csqrt%7B90%7D%7D%3D10.54%29)
And for this case we want this probability:
![P(502-10 < \bar X < 502+10)](https://tex.z-dn.net/?f=%20P%28502-10%20%3C%20%5Cbar%20X%20%3C%20502%2B10%29)
And for this case we can use the z score given by:
![z= \frac{\bar X -\mu}{\sigma_{\bar x}}](https://tex.z-dn.net/?f=%20z%3D%20%5Cfrac%7B%5Cbar%20X%20-%5Cmu%7D%7B%5Csigma_%7B%5Cbar%20x%7D%7D)
And if we use this formula we got:
![P(492](https://tex.z-dn.net/?f=%20P%28492%3CX%3C512%29%20%3D%20P%28%5Cfrac%7B492-502%7D%7B10.54%7D%20%3CZ%3C%5Cfrac%7B512-502%7D%7B10.54%7D%29%20%3D%20P%28-0.949%20%3C%20Z%3C%200.949%29)
And we can use excel or the normal standard table to find this probability:
![P(-0.949 < Z< 0.949)= P(Z](https://tex.z-dn.net/?f=%20P%28-0.949%20%3C%20Z%3C%200.949%29%3D%20P%28Z%3C0.949%29%20-P%28Z%3C-0.949%29%20%3D0.8287-0.1713%3D0.6574%20)
Part b
Let X the random variable that represent the scores for Math of a population, and for this case we know the distribution for X is given by:
Where
and
We select a sample of size n=90, since the distribution for X is normal then the distribution for the sample size is also normal
![\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}}=\frac{100}{\sqrt{90}}=10.54)](https://tex.z-dn.net/?f=%5Cbar%20X%20%5Csim%20N%28%5Cmu%2C%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%3D%5Cfrac%7B100%7D%7B%5Csqrt%7B90%7D%7D%3D10.54%29)
And for this case we want this probability:
![P(515-10 < \bar X < 515+10)](https://tex.z-dn.net/?f=%20P%28515-10%20%3C%20%5Cbar%20X%20%3C%20515%2B10%29)
And for this case we can use the z score given by:
![z= \frac{\bar X -\mu}{\sigma_{\bar x}}](https://tex.z-dn.net/?f=%20z%3D%20%5Cfrac%7B%5Cbar%20X%20-%5Cmu%7D%7B%5Csigma_%7B%5Cbar%20x%7D%7D)
And if we use this formula we got:
![P(505](https://tex.z-dn.net/?f=%20P%28505%3CX%3C525%29%20%3D%20P%28%5Cfrac%7B505-515%7D%7B10.54%7D%20%3CZ%3C%5Cfrac%7B525-505%7D%7B10.54%7D%29%20%3D%20P%28-0.949%20%3C%20Z%3C%201.898%29)
And we can use excel or the normal standard table to find this probability:
![P(-0.949 < Z< 1.898)= P(Z](https://tex.z-dn.net/?f=%20P%28-0.949%20%3C%20Z%3C%201.898%29%3D%20P%28Z%3C1.898%29%20-P%28Z%3C-0.949%29%20%3D0.9712-0.1713%3D0.7998%20)
Part c
Let X the random variable that represent the scores for Writing of a population, and for this case we know the distribution for X is given by:
Where
and
We select a sample of size n=100, since the distribution for X is normal then the distribution for the sample size is also normal
![\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}}=\frac{100}{\sqrt{100}}=10)](https://tex.z-dn.net/?f=%5Cbar%20X%20%5Csim%20N%28%5Cmu%2C%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%3D%5Cfrac%7B100%7D%7B%5Csqrt%7B100%7D%7D%3D10%29)
And for this case we want this probability:
![P(494-10 < \bar X < 494+10)](https://tex.z-dn.net/?f=%20P%28494-10%20%3C%20%5Cbar%20X%20%3C%20494%2B10%29)
And for this case we can use the z score given by:
![z= \frac{\bar X -\mu}{\sigma_{\bar x}}](https://tex.z-dn.net/?f=%20z%3D%20%5Cfrac%7B%5Cbar%20X%20-%5Cmu%7D%7B%5Csigma_%7B%5Cbar%20x%7D%7D)
And if we use this formula we got:
![P(484](https://tex.z-dn.net/?f=%20P%28484%3CX%3C504%29%20%3D%20P%28%5Cfrac%7B484-494%7D%7B10%7D%20%3CZ%3C%5Cfrac%7B504-494%7D%7B10%7D%29%20%3D%20P%28-1%20%3C%20Z%3C%201%29)
And we can use excel or the normal standard table to find this probability:
![P(-1 < Z< 1)= P(Z](https://tex.z-dn.net/?f=%20P%28-1%20%3C%20Z%3C%201%29%3D%20P%28Z%3C1%29%20-P%28Z%3C-1%29%20%3D0.8413-0.1587%3D0.6827%20)