1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleksandr-060686 [28]
3 years ago
9

What are the three ways to describe a relation?

Mathematics
2 answers:
Anika [276]3 years ago
5 0

Step-by-step explanation:

"A relation between two sets is a collection of ordered pairs containing one object from each set. If the object x is from the first set and the object y is from the second set, then the objects are said to be related if the ordered pair (x,y) is in the relation. A function is a type of relation."

Hope this helps :)

Brut [27]3 years ago
4 0

Answer:

a flow diagram a word formula a symbol formula

Step-by-step explanation:

You might be interested in
Greg earns 4 dollars each week he plans to save all of the money how many weeks will it take him to save 20 dollars
sashaice [31]

Answer:

the answer is going to 5

Step-by-step explanation:

4x5=20

5 0
3 years ago
Read 2 more answers
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
How many natural numbers are between 45 and 58?
Eddi Din [679]

Answer:

12

Step-by-step explanation:

You could actually list the numbers between (but not including) 45 and 58:

{46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57}.  I count 12 numbers here.

5 0
3 years ago
Read 2 more answers
Find the missing angle. PLEASE HURRY
enyata [817]

Answer:

x = 35.8°

Hope this helps...Have a good day!!

8 0
3 years ago
Read 2 more answers
I need help on this assignment, I need to find the angles of the blank spaces. Anything is appreciated!
Gre4nikov [31]

Answer:

3: 97

10: 97

9: 83

5: 97

7: 83

16: 97

Im 100% on these answers bc Ive already taken this class :)

7 0
2 years ago
Read 2 more answers
Other questions:
  • Write a fraction that is less than 5/6 And has a denominaror of 8
    8·1 answer
  • -4 (w+1) -24 Please help guys!
    12·2 answers
  • Farrah borrowed $155 from her brother. She has already paid back $15. She plans to pay back $35 each month until the debt is pai
    9·2 answers
  • A right triangle has an area of 24ft^2. The dimensions of the triangle are increased by a scale factor of 6. What is the area of
    8·1 answer
  • A bale of fabric is 189 metres long. If lengths of 15 metres, 36 metres and 29 metres are cut off, how much fabric is left?
    14·1 answer
  • Can someone help me with this problem?
    15·1 answer
  • Can some one help me with this question its hard :( down below ill give brainliest
    8·1 answer
  • In rectangle ABCD, AB = 10 cm and BC = 14 cm. If rectangle EFGH is the image after a dilation, which could be its side lengths?
    13·1 answer
  • Can someone help with this question?
    14·1 answer
  • If VW≅VY, WX = s + 69, and XY = 4s, what is the value of s?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!