Answer:
Step-by-step explanation:
To obtain the standard form of the equation of the parabola y=2(x+4)^2-7, first perform the indicated operations:
y = 2[x^2 + 8x + 16 - 7], or
y = 2[x^2 + 8x + 9],
or y = 2x^2 + 16x + 18
None of the given possible answers match. The fourth one, D, is closest to the above result, differing only in the constant term (25 versus 18).
-12.6 as a percent is -1260%
<em><u>So</u></em><em><u> </u></em><em><u>th</u></em><em><u>e</u></em><em><u> </u></em><em><u>right</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>-</u></em><em><u>2</u></em><em><u>3</u></em><em><u>.</u></em>
<h2>
<em><u>Hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em></h2>
Answer:
B
Step-by-step explanation:
f(x)=6^x has a full, positive number that is greater than one. The others are all fractions, and either are almost straight or decrease. If you graph all four, you can also see that f(x)=6^x is the only function that is increasing.
Hope this helped.
![\displaystyle\int_{.5}^1\frac{1}x\frac{dx}{x^3}=\int_{.5}^1\frac{dx}{x^4}=\left[\frac{-1}{3x^3}\right]_{.5}^1=\frac{7}3](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_%7B.5%7D%5E1%5Cfrac%7B1%7Dx%5Cfrac%7Bdx%7D%7Bx%5E3%7D%3D%5Cint_%7B.5%7D%5E1%5Cfrac%7Bdx%7D%7Bx%5E4%7D%3D%5Cleft%5B%5Cfrac%7B-1%7D%7B3x%5E3%7D%5Cright%5D_%7B.5%7D%5E1%3D%5Cfrac%7B7%7D3)
[<em>Your notation is not 100% clear since you're not using the math tool, so if that's not what you meant, leave a comment and I'll correct the answer.</em>]