Answer:
The equation for an ellipse centered at the origin with foci at (-3, 0) and (+3, 0) and co-vertices at (0, -4) and (0, +4) is:
![\frac{x^{2}}{7} + \frac{y_{2}}{16} = 1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%7D%7B7%7D%20%2B%20%5Cfrac%7By_%7B2%7D%7D%7B16%7D%20%3D%201)
Step-by-step explanation:
An ellipse center at origin is modelled after the following expression:
![\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%7D%7Ba%5E%7B2%7D%7D%20%2B%20%5Cfrac%7By%5E%7B2%7D%7D%7Bb%5E%7B2%7D%7D%20%3D%201)
Where:
,
- Major and minor semi-axes, dimensionless.
The location of the two co-vertices are (0, - 4) and (0, + 4). The distance of the major semi-axis is found by means of the Pythagorean Theorem:
![2\cdot b = \sqrt{(0-0)^{2}+ [4 - (-4)]^{2}}](https://tex.z-dn.net/?f=2%5Ccdot%20b%20%3D%20%5Csqrt%7B%280-0%29%5E%7B2%7D%2B%20%5B4%20-%20%28-4%29%5D%5E%7B2%7D%7D)
![2\cdot b = \pm 8](https://tex.z-dn.net/?f=2%5Ccdot%20b%20%3D%20%5Cpm%208)
![b = \pm 4](https://tex.z-dn.net/?f=b%20%3D%20%5Cpm%204)
The length of the major semi-axes can be calculated by knowing the distance between center and any focus (c) and the major semi-axis. First, the distance between center and any focus is determined by means of the Pythagorean Theorem:
![2\cdot c = \sqrt{[3 - (-3)]^{2}+ (0-0)^{2}}](https://tex.z-dn.net/?f=2%5Ccdot%20c%20%3D%20%5Csqrt%7B%5B3%20-%20%28-3%29%5D%5E%7B2%7D%2B%20%280-0%29%5E%7B2%7D%7D)
![2\cdot c = \pm 6](https://tex.z-dn.net/?f=2%5Ccdot%20c%20%3D%20%5Cpm%206)
![c = \pm 3](https://tex.z-dn.net/?f=c%20%3D%20%5Cpm%203)
Now, the length of the minor semi-axis is given by the following Pythagorean identity:
![a = \sqrt{b^{2}-c^{2}}](https://tex.z-dn.net/?f=a%20%3D%20%5Csqrt%7Bb%5E%7B2%7D-c%5E%7B2%7D%7D)
![a = \sqrt{4^{2}-3^{2}}](https://tex.z-dn.net/?f=a%20%3D%20%5Csqrt%7B4%5E%7B2%7D-3%5E%7B2%7D%7D)
![a = \pm \sqrt{7}](https://tex.z-dn.net/?f=a%20%3D%20%5Cpm%20%5Csqrt%7B7%7D)
The equation for an ellipse centered at the origin with foci at (-3, 0) and (+3, 0) and co-vertices at (0, -4) and (0, +4) is:
![\frac{x^{2}}{7} + \frac{y_{2}}{16} = 1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%7D%7B7%7D%20%2B%20%5Cfrac%7By_%7B2%7D%7D%7B16%7D%20%3D%201)