Answer:
Its 6/35
Step-by-step explanation:
Answer:
3. B.
1. 3551.
Step-by-step explanation:
3. For two equations to have infinite solutions, the equations must be the same.
y = -5x + 6
5x + y - 6 = 0
Multiply the whole thing by 2.
10x + 2y - 12 = 0
B.
1. Michelle rides roller coasters 3 times and plays the super swing 5 times, which means that A = 3 and B = 5.
Marty rides the roller coasters 5 times and plays the super swing 1 time. That means C = 5 and D = 1.
So, your answer will be 3551.
Hope this helps!
Answer:
85.5 reals
Step-by-step explanation:
Aqui, usando a função de análise, queremos saber a quantidade de dinheiro que deve ser investido para fornecer o número de visualizações.
A maneira como podemos resolver isso é através da substituição. Precisamos apenas substituir F (x) na equação e resolver x, o que nos dará a idéia da quantidade de dinheiro a ser investido.
matematicamente
F (x) = 40x + 80
3500 = 40x + 80
40x = 3500-80 40x = 3420 x = 3420/40
x = 85,5 reais
<h3>
Answer: Choice D) 31.2 miles</h3>
This value is approximate.
============================================================
Explanation:
Let's focus on the 48 degree angle. This angle combines with angle ABC to form a 90 degree angle. This means angle ABC is 90-48 = 42 degrees. Or in short we can say angle B = 42 when focusing on triangle ABC.
Now let's move to the 17 degree angle. Add on the 90 degree angle and we can see that angle CAB, aka angle A, is 17+90 = 107 degrees.
Based on those two interior angles, angle C must be...
A+B+C = 180
107+42+C = 180
149+C = 180
C = 180-149
C = 31
----------------
To sum things up so far, we have these known properties of triangle ABC
- angle A = 107 degrees
- side c = side AB = 24 miles
- angle B = 42 degrees
- angle C = 31 degrees
Let's use the law of sines to find side b, which is opposite angle B. This will find the length of side AC (which is the distance from the storm to station A).
b/sin(B) = c/sin(C)
b/sin(42) = 24/sin(31)
b = sin(42)*24/sin(31)
b = 31.1804803080182 which is approximate
b = 31.2 miles is the distance from the storm to station A
Make sure your calculator is in degree mode.