Answer:
<h2>
∠PQT = 72°</h2>
Step-by-step explanation:
According to the diagram shown, ∠OPQ = ∠OQP = 18°. If PQT is a tangent to the circle, it can be inferred that line OQ is perpendicular to line QT. Ths shows that ∠OQT = 90°.
Also from the diagram, ∠OQP + ∠PQT = ∠OQT;
∠PQT = ∠OQT - ∠OQP
Given ∠OQP = 18° and ∠OQT = 90°
∠PQT = 90°-18°
∠PQT = 72°
1/3 is greater than 1/5 and 1/4.
Difference between the area of the triangle and square is 25
Step-by-step explanation:
- Step 1: Find the area of the triangle given its 3 sides using the Heron's formula.
Area of the triangle =
where s = 
⇒ s = (6 + 8 + 10)/2 = 24/2 = 12
= 
=
=
= 24 sq. units
- Step 2: Find the area of the square with perimeter = 28 units.
Perimeter of the square = 4 × side = 28
⇒ Side of the square = 28/4 = 7 units
⇒ Area of the square = (side)² = 7² = 49 sq. units
- Step 3: Find the difference between the area of the square and triangle.
Difference = 49 - 24 = 25
For the first one it is 5 x10^{8}
and for the second one it is 0.0005 = 5 × 0.0001 = 5 × 10−4
0.13 cubic feet. You take all of the three numbers (0.19m,0.28m, and 0.070m) and multiply them.