The equal velocity approach for duct size assumes that the air velocity in each duct segment is the same.
How fast is the air moving through a duct?
The most common unit of air velocity (distance traveled in a unit of time) is feet per minute (FPM). The amount of air passing past a location in the duct per period of time may be calculated by multiplying the airflow by the area of the duct. The standard unit for volume flow is cubic feet per minute (CFM).
What happens when the size of ducts changes to the airflow?
- Result for an image The equal velocity technique for duct size makes the assumption that air velocity is constant across the entire duct system.
- The main lesson to be learned from this is that when air goes from a bigger to a narrower duct, its velocity rises. The velocity drops when it transitions from a shorter to a bigger duct. The flow rate or the amount of air passing through the duct in cubic feet per minute is the same in all scenarios.
Learn more about air velocity here:
brainly.com/question/3255148
#SPJ4
It is in its ground state when its orbital electron is at its lowest energy amount.

Hi Pupil Here's Your answer :::
➡➡➡➡➡➡➡➡➡➡➡➡➡
Answer : When a man jumps out from a boat, he pushes the boat with his feet (action) and the boat also exert an equal force on him in opposite direction reaction. As a result, the man jumps to the bank and the boat moves in the backward direction.
⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅
Hope this helps . . . . . .
To solve this problem it is necessary to apply the trigonometric ratios of the given velocity components.
If we make a graph of the velocity vectors in their respective velocities according to the given description we will have something similar to the attached graph.
The angle could be obtained from the components of the opposite leg and the adjacent leg so that


The opposite leg value (y) is 40cm / s and the adjacent leg (x) is 30cm / s


Therefore the final direction that does the first ball is 36.87°
Answer:
An aqueous stagnant layer that overlies the apical membrane and the subepithelial blood flow are potential barriers to the absorption of drugs that readily penetrate the absorbing cell of the epithelium. The apical, basal, and basement membranes are potential barriers to the absorption of less permeable drugs.