1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir2022 [97]
2 years ago
9

Anyone knows this? Please answer... Spam will be reported.

Physics
1 answer:
Yakvenalex [24]2 years ago
6 0

Answer:

The correct option is;

The assertion is correct, but reason wrong

Explanation:

The question is with regards to the relationship between work, energy, power, and velocity

The mass of each of the persons running up the staircase = Different

The time it takes each person to run up the stairs = Equal time

Let, 'm₁' and 'm₂' represent the mass of each of the persons that ran up the stairs and m₁ > m₂

Let 't' represent the equal time it takes then to run up the stairs

Let 'h' represent the height of the stairs

The energy, 'E', it takes to run up the stairs is equal to the potential energy, P.E., obtained at the top of the stairs

P.E. = m·g·h

Where;

m = The mass of the person at an elevated height

g = The acceleration due to gravity = Constant

h = The height reached above ground level

Given that the height reached is the same for both of the persons, we have

For m₁, P.E.₁ = m₁·g·h and for m₂, P.E.₂ = m₂·g·h

Therefore, where, m₁ > m₂, we have;

P.E.₁ > P.E.₂

∴ E₁ > E₂

Power, 'P', is the rate at which energy is expended

∴ Power, P = E/t

∴ P₁ = E₁/t  > P₂ = E₂/t

Therefore, the person with the greater mass, 'm₁', uses more power than the person of mass 'm₂', in running up the stairs

Therefore, the assertion is correct

The average velocity, vₐ = (Total distance traveled, d)/(Total time taken, t)

Given that the distance, 'd', covered in running up the stairs by both persons is the same, and the time it takes them to complete the distance, 't', is also the same, we have;

The average velocity of the person with the greater mass m₁ is the same as the average velocity of the person with mass, m₂

Therefore, the reason is wrong

The answer is that the assertion is correct, but reason wrong

You might be interested in
You pull with a force of 77 N on a piece of luggage of mass 23 kg, but it does
Vinvika [58]

Answer:

The force of static friction acting on the luggage is, Fₓ = 180.32 N

Explanation:

Given data,

The mass of the luggage, m = 23 kg

You pulled the luggage with a force of, F = 77 N

The coefficient of static friction of luggage and floor, μₓ = 0.8

The formula for static frictional force is,

                                      Fₓ = μₓ · η

Where,

                                  η - normal force acting on the luggage 'mg'

Substituting the values in the above equation,

                                   Fₓ = 0.8 x 23 x 9.8

                                        = 180.32 N

Hence, the minimum force require to pull the luggage is, Fₓ = 180.32 N

5 0
3 years ago
Read 2 more answers
Write your answer to the question below.
ElenaW [278]

Answer:

Hi... Potential energy is converted to kinetic energy and kinetic energy is converted to potential energy

8 0
2 years ago
A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, it i
lianna [129]

Answer:

<em>A) the moment of inertia of the system decreases and the angular speed increases. </em>

Explanation:

The complete question is

A merry-go-round spins freely when Diego moves quickly to the center along a radius of the  merry-go-round. As he does this, It is true to say that

A) the moment of inertia of the system decreases and the angular speed increases.

B) the moment of inertia of the system decreases and the angular speed decreases.

C) the moment of inertia of the system decreases and the angular speed remains the same.

D) the moment of inertia of the system increases and the angular speed increases.

E) the moment of inertia of the system increases and the angular speed decreases

In angular momentum conservation, the initial angular momentum of the system is conserved, and is equal to the final angular momentum of the system. The equation of this angular momentum conservation is given as

I_{1} w_{1} = I_{2} w_{2}    ....1

where I_{1} and I_{2} are the initial and final moment of inertia respectively.

and w_{1} and w_{2} are the initial and final angular speed respectively.

Also, we know that the moment of inertia of a rotating body is given as

I = mr^{2}    ....2

where m is the mass of the rotating body,

and r is the radius of the rotating body from its center.

We can see from equation 2 that decreasing the radius of rotation of the body will decrease the moment of inertia of the body.

From equation 1, we see that in order for the angular momentum to be conserved, the decrease from I_{1} to I_{2} will cause the angular speed of the system to increase from w_{1} to w_{2} .

From this we can clearly see that reducing the radius of rotation will decrease the moment of inertia, and increase the angular speed.

7 0
3 years ago
What are the unit for acceleration
Flura [38]
<h3>Answer</h3>

m/s^2 (meter per sec square)

Explanation:

acc = change in velocity/time

= distance/time

----------------

time

= m/s

------

s

=m/s^2

7 0
3 years ago
The graph represents the force applied on an 3.00kg crate while it moved 5.0m. A. How much total work is done on the crate? B. I
jeka57 [31]

a. We can calculate the amount of work by calculating the area under the graph.

first area (rectangular): 2.5 x 6 = 15

second area(trapezoid): 1/2 x (6+10) x 2.5 =20

total work done: 35 J

b. the force was first applied = 6 N

F = m.a

a = 6 : 3 = 2 m/s²

vf²=vi²+2as

vf²=6²+2.2.5

vf²=56

vf=7.5 m/s

8 0
2 years ago
Other questions:
  • A length of copper wire has a resistance 29 Ω. The wire is cut into three pieces of equal length, which are then connected as pa
    6·1 answer
  • If you double your speed, your kinetic energy will increase by:
    13·1 answer
  • Is orange juice in an orange potential energy or kinetic energy?
    12·2 answers
  • Which scientist created the most modern classification that we use today
    15·2 answers
  • The speed of sound through oxygen at 0°C is 316 meters per second. The speed of sound through solid copper is 5,010 meters per s
    6·2 answers
  • What does co2 stand for
    10·2 answers
  • bit.♠ly/3♠vhMu♠vJ remove symbols before searching or it wont work, there was a bug stoping me from attaching the image so there
    15·2 answers
  • 5. Annie drags her little red wagon with a mass of 5.00 kg, up a hill that has an angle of
    10·1 answer
  • A dolphin leaps out of the water
    8·1 answer
  • Number 5 and 6 i need just give answer
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!