Answer : The molar mass of unknown substance is, 39.7 g/mol
Explanation : Given,
Mass of unknown substance = 9.56 g
Volume of solution = 100.0 mL
Molarity = 2.41 M
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:


Therefore, the molar mass of unknown substance is, 39.7 g/mol
Answer:
The amount of heat gained by the water in cup 2 after adding the hot object(s) to it is 2119.121 Joules
Explanation:
As we know
Amount of heat gained
Q = mc (T2-T1)
Here,
mass of water in cup 2 (m) = 79.10 grams
Temperature of water in cup 2 = 16.8 degree Celsius
Specific heat of water (c) = 4.186 J/(g °C)
Final Temperature of water in cup 2 = 23.2 degree Celsius
Substituting the given values, we get -
Q = 79.10 * 4.186 * (23.2 -16.8) = 2119.121 Joules
The amount of heat gained by the water in cup 2 after adding the hot object(s) to it is 2119.121 Joules
Answer:
Diffusion occurs in solid and liquid through the constant and random motion of the smaller particles called molecules of either solid, liquid or gaseous in permeable medium as witnessed in the experiment.
Explanation:
The kinectic molecular theory of matter states that the smaller particles of matters called molecules are in constant, but random motion and the degree of movement of the molecules depends on the state or phase such matter exist, which is a derivative of the total kinetic energy possessed by the molecules. This average kinetic energy of the molecules as iodine for example is proportional to the temperature of the matter.
Diffusion should be remembered as the movement of molecules of matters from a highly concentrated region otherwise called hypertonic region to a less concentrated region called hypotonic region through a permeable medium until there is an equilibrium in the system. Since diffusion is expected to involve the movement of molecules, and any matter that can exhibit diffusion is said to have moving molecules, therefore, the kinetic molecular theory of matter is proven to be accurate with the observed movement of iodine molecules in the test tube. This shows that even the molecules of solid matters are in constant random motion, this is made more convincing when these molecules migrate without the addition of external energy source like heat, which then help to understand that the natural iodine molecules are in constant random motion, as they are changed to gaseous state without passing through liquid state, a phenomenon called sublimation.
Serotonin is a molecule composed of 10 carbon atoms (black), 12 hydrogen atoms (white), 2 nitrogen atoms (blue), and 1 oxygen atom (red).
Answer:
2
Explanation:
In two reactions energy is released.
1) C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂ + heat
It is cellular respiration reaction.It involves the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
2) 2H₂ + O₂ → 2H₂O ΔH = -486 kj/mol
The given reaction is formation of water. In this reaction oxygen and hydrogen react to form water and 486 kj/mol is also released.
The reaction in which heat is released is called exothermic reaction.
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂