It is the second option! the square with more orange dots will have to move over so that there is an equal amount or equilibrium! another way to look at it is, if we just moved the one dot on the left side then that side would be empty and there would not be equilibrium
I think it’s either a or b
Guy-Lussac's Law states that the volume and the temperature are directly proportional given that the pressure remains constant.
For this problem, we will assume constant pressure. Based on the law:
(Volume/Temperatur)1 = (Volume/Temperature)2
(3.75/100) = (6.52/T)
T = 166.667 kelvin
Answer:
To increase the yield of H₂ we would use a low temperature.
For an exothermic reaction such as this, decreasing temperature increases the value of K and the amount of products at equilibrium. Low temperature increases the value of K and the amount of products at equilibrium.
Explanation:
Let´s consider the following reaction:
CO(g) + H₂O(g) ⇌ CO₂(g) + H₂(g)
When a system at equilibrium is disturbed, the response of the system is explained by Le Chatelier's Principle: <em>If a system at equilibrium suffers a perturbation (in temperature, pressure, concentration), the system will shift its equilibrium position to counteract such perturbation</em>.
In this case, we have an exothermic reaction (ΔH° < 0). We can imagine heat as one of the products. If we decrease the temperature, the system will try to raise it favoring the forward reaction to release heat and, at the same time, increasing the yield of H₂. By having more products, the value of the equilibrium constant K increases.
The answer is gas; pressure doesn't affect the solubility of liquids or solids.