1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Virty [35]
3 years ago
9

Please help with only the circled ones (1-8)

Mathematics
1 answer:
mixas84 [53]3 years ago
3 0

When you have an exponent divided by another exponent, you subtract the exponents (only when it has the same base)

For example:

\frac{x^8}{x^3} =x^{8-3}=x^5

\frac{x^3}{x^2} =x^{3-2}=x^{1}  


When you have a negative exponent, you move it to the other side of the fraction to make the exponent positive

For example:

x^{-2}=\frac{1}{x^2}

\frac{1}{x^{-5}}=\frac{x^5}{1} = x^5

\frac{y^{-2}}{x^{-1}} =\frac{x^1}{y^2} =\frac{x}{y^2}


1. \frac{10^{15}}{10^3} =10^{15-3} = 10^{12}


2. \frac{(-3)^4}{(-3)^{-3}} =(-3)^{4-(-3)}=(-3)^{4+3} = (-3)^7


3. \frac{8}{8^3} =8^{1-3} = 8^{-2}=\frac{1}{8^2}


4. \frac{a^{12}}{a^2} =a^{12-2}=a^{10}


5. \frac{m^{-2}n^{16}}{m^{4}n^2} =(m^{-2-4})(n^{16-2})=(m^{-6})(n^{14})=\frac{n^{14}}{m^{6}}

This is one of the ways you could have done it


6. \frac{p^5q^{-10}}{p^6q^{-2}} =(p^{5-6})(q^{-10-(-2)})=(p^{-1})(q^{-8})=\frac{1}{p^1q^8} =\frac{1}{pq^8}


7. \frac{63x^{18}}{9x^{2} }   Divide 63 and 9

\frac{7x^{18}}{x^{2}} =(7)(x^{18-2})=(7)(x^{16})=7x^{16}


8. \frac{28r^4}{-7r^{15}} =(\frac{28}{-7} )(r^{4-15})=(-4)(r^{-11})=(-4)(\frac{1}{r^{11}} )=\frac{-4}{r^{11}}


[More information with exponents]

If you multiply an exponent directly with another exponent, you multiply the exponents together

For example:

(x^{2})^4=x^{2(4)}=x^8

(x^{3})^5 =x^{3(5)}=x^{15}


If you multiply a variable with an exponent by a variable with an exponent, you add the exponents

For example:

(x^{2}) (x^6)=x^{2+6}=x^8

(x^{3})(x^1)=x^{3+1}=x^4

You might be interested in
Round each amount to the nearest hundred to find the estimate of 9635 - 4891
vovikov84 [41]

Answer:

the answer is 4,744

Step-by-step explanation:

just subtract

7 0
3 years ago
Can someone help me to find length CD
uysha [10]

Answer:

CD = 3.602019190339

Step-by-step explanation:

CD = DA - CA

DA = DB×Cos(29) = 18.7×cos(29) = 16.355388523507

BA = BA×cos(43) = 18.7×cos(43) = 13.676314220278

CA = BA÷tan(47) = 13.676314220278÷tan(47) = 12.753369333168

Then

CD = 16.355388523507 - 12.753369333168 = 3.602019190339

7 0
3 years ago
The volume for a rectangular prism is given by the formula V = l · w · h, where l is the length of the prism, w is the width of
Charra [1.4K]

Answer:

4

Step-by-step explanation:

devide 144 by 9

get 16

The base squared is 16

find the root of 16

get 4

4 is your awnser

4 0
3 years ago
Pls say the answer :( pls say it
Aleksandr [31]

Refer to the pic ...(◕ᴗ◕✿)✌️✌️

4 0
3 years ago
Use Cramer Rule to solve the following system: 8x−5y=70 and 9x+7y=3
nlexa [21]

Answer:

(x,y) = (5,-6)

Step-by-step explanation:

\underline{\textbf{Determinant of a matrix.}}\\\\\text{For a}~ 2 \times 2 ~ \text{matrix,}\\\\\begin{vmatrix} a_1&a_2\\b_1&b_2 \end{vmatrix} = a_1b_2 - a_2b_1\\\\\\\text{For a}~ 3 \times 3 ~ \text{matrix,}\\\\\begin{vmatrix} a_1&a_2&a_3\\ b_1&b_2&b_3\\ c_1&c_2&c_3 \end{vmatrix} = a_1\begin{vmatrix} b_2&b_3\\c_2&c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1&b_3\\c_1&c_3 \end{vmatrix}+ a_3 \begin{vmatrix} b_1&b_2\\c_1&c_2 \end{vmatrix}\\\\\\

                     ~~~~~~~~~~~~~~~~~~=a_1(b_2c_3-b_3c_2) -a_2(b_1c_3-b_3c_1) +a_3(b_1c_2-b_2c_1)

\underline{\textbf{Cramer's Rule to solve a system of two equations.}}\\\\\text{Consider the system of two equations:}\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a_1x + b_1 y= c_1\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a_2x +b_2 y = c_2\\\\\text{Here,}\\\\x = \dfrac{D_x}{D}= \dfrac{\begin{vmatrix} c_1&b_1\\c_2&b_2 \end{vmatrix}}{\begin{vmatrix} a_1&b_1\\a_2&b_2 \end{vmatrix}}\\\\\\ y= \dfrac{D_y}{D}= \dfrac{\begin{vmatrix} a_1&c_1\\a_2&c_2 \end{vmatrix}}{\begin{vmatrix} a_1&b_1\\a_2&b_2 \end{vmatrix}}\\\\

\underline{\textbf{Solution:}}\\\\~~~~~~~~~~~~~~~~~~~~~~~8x-5y = 70~~~~~~...(i)\\\\~~~~~~~~~~~~~~~~~~~~~~~9x +7y = 3~~~~~~~...(ii)\\\\\text{Applying Cramer's rule:}\\\\x = \dfrac{D_x}{D}\\\\\\~~=\dfrac{\begin{vmatrix} 70& -5 \\3&7 \end{vmatrix}}{\begin{vmatrix} 8& -5\\ 9& 7\end{vmatrix}}\\\\\\~~=\dfrac{70(7) -(-5)(3)}{(8)(7)-(-5)(9)}\\\\\\~~=\dfrac{490+15}{56+45}\\\\\\~~=\dfrac{505}{101}\\\\\\~~=5

y = \dfrac{D_y}{D}\\\\\\~~=\dfrac{\begin{vmatrix} 8& 70 \\9&3 \end{vmatrix}}{\begin{vmatrix} 8& -5\\ 9& 7\end{vmatrix}}\\\\\\~~=\dfrac{(8)(3) -(70)(9)}{(8)(7)-(-5)(9)}\\\\\\~~=\dfrac{24-630}{56+45}\\\\\\~~=-\dfrac{606}{101}\\\\\\~~=-6

\textbf{Hence, the solution to the system of equation is}~ (x,y) = (5,-6)

7 0
2 years ago
Other questions:
  • Figure EFGHK as shown below is to be transformed to figure E′F′G′H′K′ using the rule (x, y) → (x + 8, y + 5): Which coordinates
    5·2 answers
  • A researcher developing scanners to search for hidden weapons at airports has concluded that a new scanner is not significantly
    14·1 answer
  • The midpoint of is M(–1, –2). One endpoint is C(–9, –4). Find the coordinates of the other endpoint D.
    8·1 answer
  • Holly is trying to save $25,000
    10·2 answers
  • What are the solutions to the equation e^1/4x =|4x|
    14·2 answers
  • you did not know that there was a categorical variable influencing these clusters (winter and summer), what might you estimate f
    11·1 answer
  • Which statement must be true?
    12·2 answers
  • Helpppp bdjsbhe math
    11·1 answer
  • HELP PLEASE! Write a quadratic function that passes through the point (-1,9), has an axis of symmetry of x=-3 and a minimum valu
    7·1 answer
  • 2 oranges and 3 lemons cost 64p 3 oranges and 4 lemons cot 89p whats the cost of an orange?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!