1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LuckyWell [14K]
3 years ago
11

Simplify by combining like terms: 5x + 3x + 10x

Mathematics
2 answers:
Maurinko [17]3 years ago
8 0

Answer:

18x

Step-by-step explanation:

Since all 3 are monomial terms with the same variable, we can add them together:

5x + 3x = 8x + 10x = 18x

Sholpan [36]3 years ago
5 0

Answer: 18x

Explanation: The three parts of this expression, +5x, +3x, and +10x are called terms and the numbers in front of the variables, +5, +3, and +10 are called coefficients.

Because the variables, x, x, and x are identical,

the three terms in this problem are called like terms.

Like terms can be added together

by simply adding their coefficients.

So in this problem, since 5 + 3 + 10 is 18, 5x + 3x + 10 is simply 18x.

You might be interested in
Write an inequality for the following situation:
yKpoI14uk [10]
Skakakkaiakkk.......8
6 0
3 years ago
A lumber yard offers boards based on wood species, size, and grade. If a customer can choose among 3 species, 3 sizes, and 2 gra
frutty [35]

Answer:

18

Step-by-step explanation:

3 x 3 = 9

9 x 2 = 18

5 0
3 years ago
Which is the factored form of 3y -18
Eva8 [605]
The only things you can factor out of here is a 3 so you are left with:

3(y-6)

Hope that helps.
5 0
3 years ago
I got 16/63 but i am not sure if its correct or not .
QveST [7]

Answer:

i think i got

sin x =16/65 not 16/63

3 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Other questions:
  • I don't understand this Problem PLEASE HELPP
    6·2 answers
  • Students in 7th grade took a standardized math test that they also had taken in 5th grade. The collected data showed that in two
    7·2 answers
  • Find the product. 1.5m6(-2m2)4
    7·2 answers
  • Find the length of the hypotenuse in the right triangle, if one leg is 15 and the other leg is 8
    14·1 answer
  • Can someone please help me?
    6·1 answer
  • What is the slope of the function?<br> 08<br> 04<br> O 2<br> O 5
    12·2 answers
  • The sum of two numbers is 24 and there quotent is 3
    13·1 answer
  • Using the discriminatory, determine the number of real solution 2x^2+7x-15=0
    10·1 answer
  • I need help with quiz
    8·1 answer
  • This question has been answered, thank you so much for trying to help ^^
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!