Allison ran 3/8 km (0.375 km) in 3 minutes.
Set up a proportion to find how long it takes for her to run 1 km

Cross multiply to get:

Solve:

x = 8 minutes
Answer:
Step-by-step explanation:
See the attached image
Answer:
Since the calculated value of z= -1.496 does not fall in the critical region z < -1.645 we conclude that the new program is effective. We fail to reject the null hypothesis .
Step-by-step explanation:
The sample proportion is p2= 7/27= 0.259
and q2= 0.74
The sample size = n= 27
The population proportion = p1= 0.4
q1= 0.6
We formulate the null and alternate hypotheses that the new program is effective
H0: p2> p1 vs Ha: p2 ≤ p1
The test statistic is
z= p2- p1/√ p1q1/n
z= 0.259-0.4/ √0.4*0.6/27
z= -0.141/0.09428
z= -1.496
The significance level ∝ is 0.05
The critical region for one tailed test is z ≤ ± 1.645
Since the calculated value of z= -1.496 does not fall in the critical region z < -1.645 we conclude that the new program is effective. We fail to reject the null hypothesis .
Answer:
B is correct
Step-by-step explanation:
Answer:
36
Step-by-step explanation:
Since f(x) varies directly with x, f(x) can be expressed alternatively as \[f(x) = k * x\] where k is a constant value.
Given that f(x) is 72 when the value of x is 6.
This implies, \[72 = k * 6\]
Simplifying and rearranging the equation to find the value of k:
k = \frac{72}{6}
Hence k = 12
Or, \[f(x) = 12 * x\]
When x = 3, \[f(x) = 12 *3 \]
Or in other words, the value of f(x) when x=3 is 36