1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
photoshop1234 [79]
3 years ago
5

What’s is the greatest number that can be made using the numbers 5, 3, 1, 4, 7

Mathematics
1 answer:
umka21 [38]3 years ago
6 0
Hey there,

Answer: 75,431

Hope this helps :D

~Top♥
You might be interested in
If f(x)=-16x + 70x + 5, what is f(3)?
Svetach [21]
Answer :
F(3)=-16(3)+70(3)+5
F(3)= 167
, check using your calculator
4 0
2 years ago
Read 2 more answers
At age 25, you decide to start your retirement account, and put $700 at the end of each quarter into an account paying 7.25% com
katrin [286]

Answer:

A

Step-by-step explanation:

3 0
2 years ago
Simplify the expression (x^19 y^21)^4/(x^2 y^6)^2<br><br> The simplified expression is ________.
Masja [62]
I got x^72y^72 i hope this helps

3 0
2 years ago
Read 2 more answers
In the following problem, check that it is appropriate to use the normal approximation to the binomial. Then use the normal dist
Marrrta [24]

Answer:

a) Bi [P ( X >=15 ) ] ≈ 0.9944

b) Bi [P ( X >=30 ) ] ≈ 0.3182

c)  Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) Bi [P ( X >40 ) ] ≈ 0.0046  

Step-by-step explanation:

Given:

- Total sample size n = 745

- The probability of success p = 0.037

- The probability of failure q = 0.963

Find:

a. 15 or more will live beyond their 90th birthday

b. 30 or more will live beyond their 90th birthday

c. between 25 and 35 will live beyond their 90th birthday

d. more than 40 will live beyond their 90th birthday

Solution:

- The condition for normal approximation to binomial distribution:                                                

                    n*p = 745*0.037 = 27.565 > 5

                    n*q = 745*0.963 = 717.435 > 5

                    Normal Approximation is valid.

a) P ( X >= 15 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=15 ) ] = N [ P ( X >= 14.5 ) ]

 - Then the parameters u mean and σ standard deviation for normal distribution are:

                u = n*p = 27.565

                σ = sqrt ( n*p*q ) = sqrt ( 745*0.037*0.963 ) = 5.1522

- The random variable has approximated normal distribution as follows:

                X~N ( 27.565 , 5.1522^2 )

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 14.5 ) ] = P ( Z >= (14.5 - 27.565) / 5.1522 )

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= -2.5358 ) = 0.9944

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 ) = 0.9944

Hence,

                Bi [P ( X >=15 ) ] ≈ 0.9944

b) P ( X >= 30 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=30 ) ] = N [ P ( X >= 29.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 29.5 ) ] = P ( Z >= (29.5 - 27.565) / 5.1522 )

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= 0.37556 ) = 0.3182

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 ) = 0.3182

Hence,

                Bi [P ( X >=30 ) ] ≈ 0.3182  

c) P ( 25=< X =< 35 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( 25=< X =< 35 ) ] = N [ P ( 24.5=< X =< 35.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( 24.5=< X =< 35.5 ) ]= P ( (24.5 - 27.565) / 5.1522 =<Z =< (35.5 - 27.565) / 5.1522 )

                N [ P ( 24.5=< X =< 25.5 ) ] = P ( -0.59489 =<Z =< 1.54011 )

- Now use the Z-score table to evaluate the probability:

                P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

               N [ P ( 24.5=< X =< 35.5 ) ]= P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

Hence,

                Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) P ( X > 40 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >40 ) ] = N [ P ( X > 41 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X > 41 ) ] = P ( Z > (41 - 27.565) / 5.1522 )

                N [ P ( X > 41 ) ] = P ( Z > 2.60762 )

- Now use the Z-score table to evaluate the probability:

               P ( Z > 2.60762 ) = 0.0046

               N [ P ( X > 41 ) ] =  P ( Z > 2.60762 ) = 0.0046

Hence,

                Bi [P ( X >40 ) ] ≈ 0.0046  

4 0
3 years ago
6
Dominik [7]

Answer:

1140

Step-by-step explanation:

A decagon has 10 sides so substitute it like this:

(n-2) x 180

(10-2) x 180

8 x 180= 1140

6 0
2 years ago
Other questions:
  • The fraction 6/11 = the fraction 18/
    9·2 answers
  • The length of the hypotenuse of a right triangle is 16 inches if the length of one leg is 5 inches what is the approximate lengt
    11·1 answer
  • How many minutes are in 9 weeks
    5·2 answers
  • The probability a new purchase of a fiction novel is in the form of an e-book is 0.28. The probability a newly purchased fiction
    6·2 answers
  • If you roll 5 dice what is the probability of getting exactly 3 dices with 4 and two something other than 4
    12·1 answer
  • 1)What is the mass of Nitrogen in NH3? (use two decimal places)
    7·1 answer
  • If tan b = 40/9, then sin b = ?​
    15·1 answer
  • What is the distance between C(4, 5) and D(4, -5)?
    15·2 answers
  • There are 20 purple or yellow marbles in a bag. The number of purple marbles is 4 less than 2 times the number of yellow marbles
    12·1 answer
  • 10-d=34-5d<img src="https://tex.z-dn.net/?f=10-d%3D34-5d" id="TexFormula1" title="10-d=34-5d" alt="10-d=34-5d" align="absmiddle"
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!