The graphs of y =1/x and y = 3/x – 4 can be compared by saying that c<span>ompared to the graph of y =1/x , the graph of y =3/x – 4 is a vertical stretch by a factor of 3 and a translation of 4 units down. This can be seen clearly when you graph the functions on a x-y coordinate plane.</span>
Answer:
Since the roots are 3, -4 then we must put
-3, 4 into this equation,
(x +a) * (x +b) = 0
(x -3) * (x +4) = 0 then multiplying
x^2 +x -12
Step-by-step explanation:
Answer:
63
Step-by-step explanation:
When a quadrilateral is in the circle, the opposite angels are supplementary, meaning they equal 180. So you do 180-117 and get 63
![\left[\begin{array}{ccc}2&6&3\\-5&1&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%266%263%5C%5C-5%261%264%5Cend%7Barray%7D%5Cright%5D)
R1 ÷ 2 = ![\left[\begin{array}{ccc}1&3&1.5\\-5&1&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%263%261.5%5C%5C-5%261%264%5Cend%7Barray%7D%5Cright%5D)
R2 ÷ -5 = ![\left[\begin{array}{ccc}1&3&1.5\\1&-0.2&-0.8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%263%261.5%5C%5C1%26-0.2%26-0.8%5Cend%7Barray%7D%5Cright%5D)
R2: R1 - R2 = ![\left[\begin{array}{ccc}1&3&1.5\\0&3.2&2.3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%263%261.5%5C%5C0%263.2%262.3%5Cend%7Barray%7D%5Cright%5D)
R2 ÷ 3.2 = ![\left[\begin{array}{ccc}1&3&1.5\\0&1&0.71875\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%263%261.5%5C%5C0%261%260.71875%5Cend%7Barray%7D%5Cright%5D)
R1: R1 - 3R2 = ![\left[\begin{array}{ccc}1&0&0.65625\\0&1&0.71875\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260.65625%5C%5C0%261%260.71875%5Cend%7Barray%7D%5Cright%5D)
Answer: x = 0.65625, y = 0.71875