Answer: The probability that the avg. salary of the 100 players exceeded $1 million is approximately 1.
Explanation:
Step 1: Estimate the standard error. Standard error can be calcualted by dividing the standard deviation by the square root of the sample size:

So, Standard Error is 0.08 million or $80,000.
Step 2: Next, estimate the mean is how many standard errors below the population mean $1 million.


-6.250 means that $1 million is siz standard errors away from the mean. Since, the value is too far from the bell-shaped normal distribution curve that nearly 100% of the values are greater than it.
Therefore, we can say that because 100% values are greater than it, probability that the avg. salary of the 100 players exceeded $1 million is approximately 1.
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
Let's solve your equation step-by-step.

For this equation:

Step 1: Use quadratic formula with 



Answer : No Real Solutions.
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
If this helped you, could you maybe give brainliest..?
Also Have a great day/night!
❀*May*❀
Answer:

Step-by-step explanation:
Given
Let x represent the number of tickets, and p the charges

A reduction of 50c gives an increment of 50 tickets.
This gives:
---- 

Required
Determine the demand function
First, calculate the slope:




So, the equation is:




Hence, the function is:
