Answer:
HF
Explanation:
This concept can be understood from the knowledge of Intermolecular forces of attraction.
Intermolecular bonds are Van der Waals forces which are weak forces of attraction joining non-polar and polar molecules together. They exist in the form of London Dispersion Forces and Dipole-dipole attraction.
An example of Dipole-dipole attraction is the hydrogen bond which is a unique dipole-dipole attraction between polar molecules in which a hydrogen atom is directly joined to a highly electronegative atom such as fluorine, oxygen, or nitrogen).
Molecules that possess the characteristics of hydrogen bonding have a higher boiling point. In the given question, only HF undergo hydrogen bond due to the electronegative effect of the fluorine element.
F2 occurs as a weak London dispersion force and it occurs between non-polar molecules.
Student B because it requires a hypothesis
The formula will be AI2O3
Molarity is expressed as:
Molarity = moles / liter
Given that the cell is rod-shaped, its volume is calculated using the formula for a cylinder's volume:
V = πr²L
V = π * (0.6)² * 4.9
V = 5.54 μm³
1 Liter = 10³ mm³
1 mm = 10³ μm
1 mm³ = 10⁹ μm³
1 liter = 10¹² μm³
So the volume in liters is:
5.54 x 10⁻¹² L
Moles = molarity * liters
Moles = 0.0029 * 5.54 x 10⁻¹²
Moles = 1.61 x 10⁻¹⁴
To get the number of molecules, we multiply the moles by Avagadro's number
Number of molecules = 1.61 x 10⁻¹⁴ * 6.02 x 10²³
There are 9.69 x 10⁹ molecules in the cell