Answer:

Explanation:
The formula for the velocity of the ball is

1. Velocity at time of impact

2. Velocity on rebound
The ball has enough upward velocity to reach a height of 0.86 m.

3. Acceleration

Nothing in particular determines the name of an element, it could range from who discovered it to where it was discovered!
Radium and polonium is the answer to this question. I hope I helped out!
The average atomic mass of your mixture is 1.03 u
.
The average atomic mass of H is the weighted average of the atomic masses of its isotopes.
We multiply the atomic mass of each isotope by a number representing its relative importance (i.e., its % abundance).
Thus,
0.99 × 1.01 u = 0.998 u
0.002 × 2.01 u = 0.004 u
0.008 × 3.02 u = <u>0.024 u</u>
TOTAL = 1.03 u