Because they didn’t go extinct at the same time
Answer:
The water at 38 °C has faster-moving molecules than the sample at 295 K.
Explanation:
Converting the temperature, 295 K from Kelvin to Celsius:
295 - 273 = 22°C
⇒The boiling point of water is 100°C and its melting point 0°C
⇒When we compare water at those 2 different temperatures ( 22°C and 38°C) we can say that water is in liquid form at both these temperatures as both of them are quite below the boiling temperature and above the melting temperature.
⇒The difference in temperature between water at the 2 given temperatures = 38°C - 22°C = 16°C
Water at 38°C is at a higher temperature and so is warmer than water at a lower temperature of 22°C.
At the atomic scale, the kinetic energy of atoms and molecules is sometimes referred to as heat energy. Kinetic energy is also related to the concept of temperature. Temperature is defined as the measure of the average speed of atoms and molecules. The higher the temperature, the faster these particles of matter move.
Isoelectronic species are ions or elements that have equal number of electrons. From the root word, electron of the word isoelectronic. On the other hand, isotructural species are compounds with the same structures.Hope this answers the question.
2.0 L
The key to any dilution calculation is the dilution factor
The dilution factor essentially tells you how concentrated the stock solution was compared with the diluted solution.
In your case, the dilution must take you from a concentrated hydrochloric acid solution of 18.5 M to a diluted solution of 1.5 M, so the dilution factor must be equal to
DF=18.5M1.5M=12.333
So, in order to decrease the concentration of the stock solution by a factor of 12.333, you must increase its volume by a factor of 12.333by adding water.
The volume of the stock solution needed for this dilution will be
DF=VdilutedVstock⇒Vstock=VdilutedDF
Plug in your values to find
Vstock=25.0 L12.333=2.0 L−−−−−
The answer is rounded to two sig figs, the number of significant figures you have for the concentration od the diluted solution.
So, to make 25.0 L of 1.5 M hydrochloric acid solution, take 2.0 L of 18.5 M hydrochloric acid solution and dilute it to a final volume of 25.0 L.
IMPORTANT NOTE! Do not forget that you must always add concentrated acid to water and not the other way around!
In this case, you're working with very concentrated hydrochloric acid, so it would be best to keep the stock solution and the water needed for the dilution in an ice bath before the dilution.
Also, it would be best to perform the dilution in several steps using smaller doses of stock solution. Don't forget to stir as you're adding the acid!
So, to dilute your solution, take several steps to add the concentrated acid solution to enough water to ensure that the final is as close to 25.0 L as possible. If you're still a couple of milliliters short of the target volume, finish the dilution by adding water.
Always remember
Water to concentrated acid →.NO!
Concentrated acid to water →.YES!
25,000 buts you in the 30% bracet, so your answer would be, 30% or $7,500