Ans
I = sqrt(P/R)
Step-by-step explanation:
You divide both sides by R first
P/R = I^2 R/R
So,
I^2 = P/R
take the square root of both sides
I = sqrt(P/R)
Answer:
x=-2, y=5. (-2, 5).
Step-by-step explanation:
15x-4y=-50
3x-2y=-16
---------------
15x-4y=-50
-5(3x-2y)=-5(-16)
------------------------
15x-4y=-50
-15x+10y=80
-------------------
6y=30
y=30/6
y=5
3x-2(5)=-16
3x-10=-16
3x=-16+10
3x=-6
x=-6/3
x=-2
Answer:
idk reeeeeeeeee
Step-by-step explanation:
idkreeeeeeeeee
I've answered your other question as well.
Step-by-step explanation:
Since the identity is true whether the angle x is measured in degrees, radians, gradians (indeed, anything else you care to concoct), I’ll omit the ‘degrees’ sign.
Using the binomial theorem, (a+b)3=a3+3a2b+3ab2+b3
⇒a3+b3=(a+b)3−3a2b−3ab2=(a+b)3−3(a+b)ab
Substituting a=sin2(x) and b=cos2(x), we have:
sin6(x)+cos6(x)=(sin2(x)+cos2(x))3−3(sin2(x)+cos2(x))sin2(x)cos2(x)
Using the trigonometric identity cos2(x)+sin2(x)=1, your expression simplifies to:
sin6(x)+cos6(x)=1−3sin2(x)cos2(x)
From the double angle formula for the sine function, sin(2x)=2sin(x)cos(x)⇒sin(x)cos(x)=0.5sin(2x)
Meaning the expression can be rewritten as:
sin6(x)+cos6(x)=1−0.75sin2(2x)=1−34sin2(2x)