Let
denote the rocket's position, velocity, and acceleration vectors at time
.
We're given its initial position

and velocity

Immediately after launch, the rocket is subject to gravity, so its acceleration is

where
.
a. We can obtain the velocity and position vectors by respectively integrating the acceleration and velocity functions. By the fundamental theorem of calculus,


(the integral of 0 is a constant, but it ultimately doesn't matter in this case)

and



b. The rocket stays in the air for as long as it takes until
, where
is the
-component of the position vector.

The range of the rocket is the distance between the rocket's final position and the origin (0, 0, 0):

c. The rocket reaches its maximum height when its vertical velocity (the
-component) is 0, at which point we have


Answer: x = √58
Decimal: 7.6157710 (Not Rounded)
Explanation: Using pythagorean theorem because it’s used for right triangle when mostly trying to find the hypotenuse.
3^2 + 7^ = c^2
Answer:
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeStep-by-step explanation:
Answer:
LHS.= Sin 2x /( 1 + cos2x )
We have , sin 2x = 2 sinx•cosx
And. cos2x = 2cos^2 x - 1
i.e . 1+ cosx 2x = 2cos^2x
Putting the above results in the LHSwe get,
Sin2x/ ( 1+ cos2x ) =2 sinx•cosx/2cos^2x
=sinx / cosx
= Tanx
.•. sin2x/(1 + cos2x)= tanx
Step-by-step explanation: