11 pt. = 176 oz.
(Double-check if this doesn't sound correct)
The triangles that are similar would be ΔGCB and ΔPEB due to Angle, Angle, Angle similarity theorem.
<h3>How to identify similar triangles?</h3>
From the image attached, we see that we are given the Parallelogram GRPC. Thus;
A. The triangles that are similar would be ΔGCB and ΔPEB due to Angle, Angle, Angle similarity theorem.
B. The proof of the fact that ΔGCB and ΔPEB are similar pairs of triangles is as follow;
∠CGB ≅ ∠PEB (Alternate Interior Angles)
∠BPE ≅ ∠BCG (Alternate Interior Angles)
∠GBC ≅ ∠EBP (Vertical Angles)
C. To find the distance from B to E and from P to E, we will first find PE and then BE by proportion;
225/325 = PE/375
PE = 260 ft
BE/425 = 225/325
BE = 294 ft
Read more about Similar Triangles at; brainly.com/question/14285697
#SPJ1
Answer:
Kay's husband drove at a speed of 50 mph
Step-by-step explanation:
This is a problem of simple motion.
First of all we must calculate how far Kay traveled to her job, and then estimate the speed with which her husband traveled later.
d=vt
v=45 mph
t= 20 minutes/60 min/hour = 0.333 h (to be consistent with the units)
d= 45mph*0.333h= 15 miles
If Kay took 20 minutes to get to work and her husband left home two minutes after her and they both arrived at the same time, it means he took 18 minutes to travel the same distance.
To calculate the speed with which Kate's husband made the tour, we will use the same initial formula and isolate the value of "V"
d=vt; so
v=
d= 15 miles
t= 18 minutes/60 min/hour = 0.30 h (to be consistent with the units)
v=
Kay's husband drove at a speed of 50 mph
Answer:
The table represents a function because each input corresponds to exactly one output.
Step-by-step explanation:
A table can be regarded as representing a function if and only if every input can only be mapped to exactly one output. In other words, it means, only 1 exact output can be assigned to an input. In a table of function, an input cannot have two different outputs. Although, two different inputs can be assigned to the same output.
From the table given, we see that every input has exactly one output. Although, we have different inputs that gives the same output.
Therefore, we can conclude that the table represents a function because each input corresponds to exactly one output.