For 5, what is happening is all the points shift down negative 2 on the Y axis and then flip over the x axis.
For 6, it would flip over the Y axis and start at positive 1 x the opposite
I'm just estimating here,
5/48,3/16,0.5,0.75
<h3>
Answer:</h3>
- C. (9x -1)(x +4) = 9x² +35x -4
- B. 480
- A. P(t) = 4(1.019)^t
Step-by-step explanation:
1. See the attachment for the filled-in diagram. Adding the contents of the figure gives the sum at the bottom, matching selection C.
2. If we let "d" represent the length of the second volyage, then the total length of the two voyages is ...
... (d+43) + d = 1003
... 2d = 960 . . . . . . . subtract 43
... d = 480 . . . . . . . . divide by 2
The second voyage lasted 480 days.
3. 1.9% - 1.9/100 = 0.019. Adding this fraction to the original means the original is multiplied by 1 +0.019 = 1.019. Doing this multiplication each year for t years means the multiplier is (1.019)^t.
Since the starting value (in 1975) is 4 (billion), the population t years after that is ...
... P(t) = 4(1.019)^t
Answer:
The correct option is D) 34%.
Step-by-step explanation:
Consider the provided information.
If it is given that you scored in the 66th percentile, that means you scored "as well as or better than" 66% of the group.
Here it is given that 66th percentile that means 66% of the data located below the 66th percentile.
That means 100%-66% = 34% of the data located above the 66th percentile,
Thus, the approximately 34% percentage of apple diameters is greater than the 66th percentile.
Therefore, the correct option is D) 34%.
Answer:
(a) 0.5899
(b) 0.9166
Step-by-step explanation:
Let X be the random variable that represents the height of a woman. Then, X is normally distributed with
= 62.5 in
= 2.2 in
the normal probability density function is given by
, then
(a)
= 0.5899
(in the R statistical programming language) pnorm(63, mean = 62.5, sd = 2.2)
(b) We are seeking
where n = 37.
is normally distributed with mean 62.5 in and standard deviation
. So, the probability density function is given by
, and
= 0.9166
(in the R statistical programming language) pnorm(63, mean = 62.5, sd = 2.2/sqrt(37))
You can use a table from a book to find the probabilities or a programming language like the R statistical programming language.