parallel lines have the same slope
The slope-intercept form of a linear equatio is y=mx+b, where m stands for the "slope of the line" and b stands for the "y-intercept of the line"
They give you the equation y= -5/6x+3 Notice this is already on the slope-intercept form, so in this case the slope is -5/6 and the y-intercept is 3
You want an equation of the line that is parallel to the given line. The slopes must be the same, so m=-5/6
So far we have y=-5/6x + b
We don't have b yet but that can be found using the given point (6,-1) which tells you that "x is 6 when y is -1"
Replace that on the equation y=-5/6x + b and you get
-1 = (-5/6)(6) + b
-1 = -5 +b
4 = b
b = 4
We found b, or the y-intercept
Go back to the equation y = -5/6 x + b and replace this b with the b we just found
y = -5/6x + 4
The standard form is 3x+4y=8
Answer:
a. h = 60t − 4.9t²
b. 12.2 seconds
c. 183.7 meters
Step-by-step explanation:
a. Given:
y₀ = 0 m
v₀ = 60 m/s
a = -9.8 m/s²
y = y₀ + v₀ t + ½ at²
h = 0 m + (60 m/s) t + ½ (-9.8 m/s²) t²
h = 60t − 4.9t²
b. When the ball lands, h = 0.
0 = 60t − 4.9t²
0 = t (60 − 4.9t)
t = 0 or 12.2
The ball lands after 12.2 seconds.
c. The maximum height is at the vertex of the parabola.
t = -b / (2a)
t = -60 / (2 × -4.9)
t = 6.1 seconds
Alternatively, the maximum height is reached at half the time it takes to land.
t = 12.2 / 2
t = 6.1 seconds
After 6.1 seconds, the height reached is:
h = 60 (6.1) − 4.9 (6.1)²
h = 183.7 meters
Answer:
1/2
Step-by-step explanation:
Well, First let us find the amount of numbers in a die greater than 3.
Remember greater than 3 does not include 3.
We have 3 numbers, 4,5,6 that are greater than 3.
The probabilty of getting a rolling a number greater than 3 is 3/6.
The probability of the coin landing on heads is 1/2.
BUT, the problem is only requiring for you to find the probabilty of rolling a dice greater than 3. (key words)
Which is 3/6 or simplified to 1/2.