Answer:
-3
Step-by-step explanation:
Numbers that come out of the absolute values are always positive.
|6 - 4| -|3 - 8| =
| 2| - | -5| =
2 - 5 =
-3
Answer:
0.010
Step-by-step explanation:
We solve the above question using z score formula
z = (x-μ)/σ, where
x is the raw score = 63 inches
μ is the population mean = 70 inches
σ is the population standard deviation = 3 inches
For x shorter than 63 inches = x < 63
Z score = x - μ/σ
= 63 - 70/3
= -2.33333
Probability value from Z-Table:
P(x<63) = 0.0098153
Approximately to the nearest thousandth = 0.010
Therefore, the probability that a randomly selected student will be shorter than 63 inches tall, to the nearest thousandth is 0.010.
The sound wave with a <u>frequency of 20</u> waves/sec is 800 longer than the wavelength of a sound wave with a <u>frequency of 16,000</u> waves/sec
<h3>Calculating wavelength </h3>
From the question, we are to determine how many times longer is the first sound wave compared to the second sound water
Using the formula,
v = fλ
∴ λ = v/f
Where v is the velocity
f is the frequency
and λ is the wavelength
For the first wave
f = 20 waves/sec
Then,
λ₁ = v/20
For the second wave
f = 16,000 waves/sec
λ₂ = v/16000
Then,
The factor by which the first sound wave is longer than the second sound wave is
λ₁/ λ₂ = (v/20) ÷( v/16000)
= (v/20) × 16000/v)
= 16000/20
= 800
Hence, the sound wave with a <u>frequency of 20</u> waves/sec is 800 longer than the wavelength of a sound wave with a <u>frequency of 16,000</u> waves/sec
Learn more on Calculating wavelength here: brainly.com/question/16396485
#SPJ1
5,309 divided by 43 is equal to 123.4651162790698