Using the z-distribution, as we have a proportion, the 95% confidence interval is (0.2316, 0.3112).
<h3>What is a confidence interval of proportions?</h3>
A confidence interval of proportions is given by:

In which:
is the sample proportion.
In this problem, we have a 95% confidence level, hence
, z is the value of Z that has a p-value of
, so the critical value is z = 1.96.
We also consider that 130 out of the 479 season ticket holders spent $1000 or more at the previous two home football games, hence:

Hence the bounds of the interval are found as follows:


The 95% confidence interval is (0.2316, 0.3112).
More can be learned about the z-distribution at brainly.com/question/25890103
Answer: 2:7 times
Step-by-step explanation: hope it helps u
Answer: 164
Step-by-step explanation: 656
/4
164
Answer:
0.5 I think. because for every 2 on the x axis, it grows 1 on the y axis.