1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergeinik [125]
3 years ago
14

How can you tell when a pattern shows counting on by tens?

Mathematics
2 answers:
fgiga [73]3 years ago
8 0
If it has the numbers 10,20,30,40,50........
barxatty [35]3 years ago
3 0
The zero normally gives it away for example: 10,20,30,40,50
You might be interested in
If you are good at 9th grade math tell me and send me your number so we can text I really need a tutor or just help please
horrorfan [7]

Answer:

I'm super sorry that i can't help but if i could get you to my brother and ask him for his number i bet he'll be able to help. ;) and if u r a girl he's pretty desperate for a girlfriend so ..... yeah

Step-by-step explanation:

hope this helps and also hope my brother can help byyyyyeeeee

6 0
3 years ago
Read 2 more answers
Solve each equation.<br> e. log:(6x – 3) = 2
Ipatiy [6.2K]

Answer:

0.9542

Step-by-step explanation:

8 0
3 years ago
Based on the figure, which statement provides enough information to conclude that line ris
GREYUIT [131]

Answer:

m<6 = 90°

Step-by-step explanation:

If lines are perpendicular, the angles form by their intersection measure 90°.

Answer: m<6 = 90°

4 0
2 years ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
3 years ago
What is the answer to 16*40?
Leni [432]
16x40=640

I hope I helped

3 0
3 years ago
Read 2 more answers
Other questions:
  • A line with slope 3.5 and y-intercept (0,4) Show work
    5·1 answer
  • 4. Which expression represents "4 less than the product of 2 and a number e"?
    10·1 answer
  • Bases are 26.5 and 30. the area is 791. what is the height?
    7·1 answer
  • Please help need it
    11·2 answers
  • Could someone tell me what x=
    8·1 answer
  • Would it be correct to name any of the angles
    9·1 answer
  • Please help it’s a slope from graph
    12·2 answers
  • Have 5 Points!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    10·2 answers
  • What is the answer I’ve been stuck on this for way too long
    7·2 answers
  • Find the surface area of the cone in terms of pi. 15cm 3cm
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!