Answers:
4; 20; 3x² - 4x + 3; 52; 17
Step-by-step explanation:
f(-1): replace x in f(x) = x² + 3 with -1: f(-1) = (-1)² + 3 = 4
f(-4) + g(-1) = (-4)² + 3 + <em>2(-1) + 3</em> = 16 + 3 <em>- 2 + 3</em> = 20 <em>(since g(x) = 2X + 3)</em>
<em />
3f(x) - 2g(x) = 3[x² +3] - 2[2x + 3} = 3x² + 9 - 4x - 6 = 3x² - 4x + 3
f(g(2)): First, evaluate g(2). It is g(2) = 2(2) + 3 = 7. Next, use this output, 7, as the input to f(x): f(g(x)) = (7)² + 3 = 49 + 3 = 52
g(f(2)): First, evaluate f(x) at x = 2: f(2) = (2)² + 3 = 7. Next, use this 7 as the input to g(x): g(f(2)) = g(7) = 2(7) + 3 = 17
Question 1:
73 is a prime number. It can only be divided by 1 and by itself.
The GCF of the three numbers:
54 36 73
1×54 1×36 1×73
2×27 2×18
3×18 3×12
6×9 4×9
6×6
GCF of 54, 36 and 73 is 1
GCF of 54 and 36 is 18
If we divide 54 apples into 18 baskets, we have 3 apples in each basket
If we divide 36 oranges into 18 baskets, we have 2 oranges in each basket
If we divide 73 bananas into 18 baskets, we have 4 bananas in each basket + one banana left over.
So the greatest number of identical fruit baskets we can make with the least amount of fruit left over is 18 baskets
Answer:
Step-by-step explanation: 2.35%+95%
Answer is 97.35%
60×3=180 is the answer for your question
Minute=60 secs