1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Valentin [98]
2 years ago
13

Can anyone help me with this problem???

Mathematics
1 answer:
jasenka [17]2 years ago
8 0

Note that x is the hypotenuse of a right triangle. Applying the Pyth. Thm.,


x^2 = 2^2 + 6^2, or x^2 = 4 + 36 = 40.


Thus, the hypotenuse is +sqrt(40), or 2sqrt(10).

You might be interested in
I need help with this
igomit [66]
I think its 63 3x3x7
3 0
2 years ago
2. Find the surface area of a cylindrical can of tennis balls if the height of the can is 8
alina1380 [7]

Answer:

125.7 square inches

Step-by-step explanation:

The surface area of a cylinder is the sum of the areas of the two circles on each end and the area encircling "rectangle". Note that the length of this "rectangle" is the height of the can, while the width is the perimeter of the circle. The full equation is:

A=2 \pi r^2 +2 \pi r h\\A=2 \pi r(r+h)\\A=2 \pi (2)(2+8)\\A=40 \pi\\A=125.7

7 0
3 years ago
Read 2 more answers
If 2tanA=3tanB then prove that,<br>tan(A+B)= 5sin2B/5cos2B-1​
Fed [463]

By definition of tangent,

tan(A + B) = sin(A + B) / cos(A + B)

Using the angle sum identities for sine and cosine,

sin(x + y) = sin(x) cos(y) + cos(x) sin(y)

cos(x + y) = cos(x) cos(y) - sin(x) sin(y)

yields

tan(A + B) = (sin(A) cos(B) + cos(A) sin(B)) / (cos(A) cos(B) - sin(A) sin(B))

Multiplying the right side by 1/(cos(A) cos(B)) uniformly gives

tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A) tan(B))

Since 2 tan(A) = 3 tan(B), it follows that

tan(A + B) = (3/2 tan(B) + tan(B)) / (1 - 3/2 tan²(B))

… = 5 tan(B) / (2 - 3 tan²(B))

Putting everything back in terms of sin and cos gives

tan(A + B) = (5 sin(B)/cos(B)) / (2 - 3 sin²(B)/cos²(B))

Multiplying uniformly by cos²(B) gives

tan(A + B) = 5 sin(B) cos(B) / (2 cos²(B) - 3 sin²(B))

Recall the double angle identities for sin and cos:

sin(2x) = 2 sin(x) cos(x)

cos(2x) = cos²(x) - sin²(x)

and multiplying uniformly by 2, we find that

tan(A + B) = 10 sin(B) cos(B) / (4 cos²(B) - 6 sin²(B))

… = 10 sin(B) cos(B) / (4 (cos²(B) - sin²(B)) - 2 sin²(B))

… = 5 sin(2B) / (4 cos(2B) - 2 sin²(B))

The Pythagorean identity,

cos²(x) + sin²(x) = 1

lets us rewrite the double angle identity for cos as

cos(2x) = 1 - 2 sin²(x)

so it follows that

tan(A + B) = 5 sin(2B) / (4 cos(2B) + 1 - 2 sin²(B) - 1)

… = 5 sin(2B) / (4 cos(2B) + cos(2B) - 1)

… = 5 sin(2B) / (4 cos(2B) - 1)

as required.

5 0
2 years ago
Help plz!!!!!!!!!<br><br><br> *tysm*
Dennis_Churaev [7]

-7.5x = -5.61 - 0.39

x = -6 /-7.5

x = 0.8

5 0
3 years ago
6/15=2/c HOW TO SOLVE THIS PROBLEM
Maslowich
The answer is 5. 
you can turn it into a fraction ratio (6 over 15 is equal to 2 over c) and then cross multiply
3 0
2 years ago
Read 2 more answers
Other questions:
  • A certain field is a rectangle with a perimeter of 940 feet. the length is 190 feet more than the width. find the width and leng
    8·1 answer
  • 673 divided by blank = 0.673. What is blank?
    14·2 answers
  • A refund of $3.15 on a $8.64 bill
    10·2 answers
  • The table shows the median home prices in Florida. What is the equation of a trend line that models a relationship between time
    9·2 answers
  • Converting repeating decimals to a fraction
    11·1 answer
  • What is an equation of the line that passes through the points (1, 2) and (2, -1)?
    13·1 answer
  • Which statements are true about the graph shown below. There are more than one answer.
    6·1 answer
  • Simplify the expression 34 ÷ 39.
    15·2 answers
  • 2.5 years = (how many weeks)
    11·1 answer
  • Write an equation to represent the relationship shown in the graph.<br> Use the graph below
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!