Grass and stuff they are herbivores
The change in motion affect the temperature of the system as the temperature of the system is lower now than it was initially. Faster moving particles result in a higher temperature for the system.
<h3>What is temperature?</h3>
It should be noted that temperature simply means the degree of hotness or coldness of a body.
In this case, the change in motion affect the temperature of the system as the temperature of the system is lower now than it was initially
Also, it should be noted that faster moving particles result in a higher temperature for the system.
Learn more about temperature on:
brainly.com/question/17053123
#SPJ4
The particles in some system are moving around quickly. A few minutes later, the particles are moving, on average, more slowly. How does this change in motion affect the temperature of the system? A. The temperature of the system did not change. The speed of the particles has no effect on the temperature, only the type of atom affects the temperature. B. The temperature of the system is higher now than it was initially. Slower moving particles result in a higher temperature for the system. C. The temperature of the system did not change. The speed of the particles does not affect temperature, the number of particles affects the temperature. D. The temperature of the system is lower now than it was initially. Faster moving particles result in a higher temperature for the system.
Because tropical levels used to be broken because temperatures hasn't varied in the years and history of global temperatures and history.
Sun thermal energy travels than water absorbs the heat then it heads to the south then
Answer:
Transmission electron microscope (MET): allows sample observation in ultra-thin sections. A TEM directs the electron beam towards the object to be increased. A part of the electrons bounce or are absorbed by the object and others pass through it forming an enlarged image of the specimen. To use a TEM, the sample must be cut into thin layers, not larger than a couple thousand thousands of angstroms. A photographic plate or a fluorescent screen is placed behind the object to record the enlarged image. Transmission electron microscopes can increase an object up to a million times.
A scanning electron microscope creates an enlarged image of the surface of an object. It is not necessary to cut the object into layers to observe it with an SEM, but it can be placed in the microscope with very few preparations. The SEM scans the image surface point by point, unlike the TEM, which examines a large part of the sample each time. Its operation is based on traversing the sample with a very concentrated beam of electrons, similar to the scanning of an electron beam on a television screen. The electrons in the beam can disperse from the sample or cause secondary electrons to appear. Lost and secondary electrons are collected and counted by an electronic device located on the sides of the specimen. Each point read from the sample corresponds to a pixel on a television monitor. The higher the number of electrons counted by the device, the greater the brightness of the pixel on the screen. As the electron beam sweeps the sample, the entire image of it is presented on the monitor. Scanning electron microscopes can enlarge objects 200,000 times or more. This type of microscope is very useful because, unlike TEM or optical microscopes, it produces realistic three-dimensional images of the object's surface.