1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavlova-9 [17]
3 years ago
14

Someone help plz plz

Mathematics
2 answers:
Rashid [163]3 years ago
6 0

Answer:

8

Step-by-step explanation:

don't start with 2, start with 0

AveGali [126]3 years ago
4 0

Answer:

8

Step-by-step explanation:

the graph is going by two. since you start with 2 and end at 10 its 8.

You might be interested in
The graph of a line passes through the two points (-2,1) and (2,1)
Vinil7 [7]

Answer: if you graph these points, you'll see that the line is horizontal, so the slope is zero. It will cross the y axis (y intercept) at y=1.

Step-by-step explanation:

Slope = y2-y1/x2-x1, so in this example:

m = 1-1/it doesn't matter because the answer will be zero!!

Now for slope intercept form:

y = mx + b

y = 0x + b; take one of your points and plug it in:

1= 0(2)+ b

1=0 + b

1=b

So your equation is:

y= 0(x) + 1

y=1

8 0
3 years ago
Find sin(2x), cos(2x), and tan(2x) from the given information.
larisa86 [58]

Since \cot(x)=\frac{2}{3} and \cot^{2} x+1=\csc^{2} x, we know that:

\left(\frac{2}{3} \right)^{2}+1=\csc^{2} x\\\\\frac{13}{9}=\csc^{2} x\\\\\csc x=\frac{\sqrt{13}}{3}

If \csc x=\frac{\sqrt{13}}{3}, this means that \sin x=\frac{3}{\sqrt{13}} and by the Pythagorean identity,

\sin^{2} x+\cos^{2} x=1\\\left(\frac{3}{\sqrt{13}} \right)^{2}+\cos^{2} x=1\\\frac{9}{13}+\cos^{2} x=1\\\cos^{2} x=\frac{4}13}\\\cos x=\frac{2}{\sqrt{13}}

  • Using the double angle formula for sine, \sin(2x)=2\left(\frac{3}{\sqrt{13}} \right)\left(\frac{2}{\sqrt{13}} \right)=\boxed{\frac{12}{13}}
  • Using the double angle formula for cosine, \cos(2x)=1-2\left(\frac{3}{\sqrt{13}} \right)^{2}=\boxed{-\frac{5}{13}}
  • So, since tan=sin/cos, \tan (2x)=\frac{\sin(2x)}{\cos(2x)}=\frac{\frac{12}{13}}{-\frac{5}{13}}=\boxed{-\frac{12}{5}}

7 0
2 years ago
20 points! <br> What are the graphing coordinates for:<br> g(1)=-3(1/2)
slega [8]

Answer:

(-1,5,0)

Step-by-step explanation:

The line goes straight up

5 0
3 years ago
What is the value of y in the equation 2(3y + 4 + 2) = 196 − 16?<br><br> 26<br> 28<br> 30<br> 32
koban [17]

Answer:

28

Step-by-step explanation:

2(3y + 4 + 2) = 196 − 16

6y + 8 + 4 = 196 - 16

6y + 12 = 196 - 16

6y + 12 = 180

6y = 168

y = 28

Best of Luck!

4 0
3 years ago
Simplify the following: <br> (4x^-3b^4)^-3
Daniel [21]

=  \frac{1}{(4 {x}^{3} - b^{4} ) {}^{3}  }

Step-by-step explanation:

(4 {x}^{3}  - b ^{4} )^{ - 3}

<h2><em>EXPRESS </em><em>WITH </em><em>A </em><em>POSITIVE</em><em> </em><em>EXPONENT</em></h2>

<em>=  \frac{1}{(4 {x}^{3}  - b {}^{4} \: )^{3}  }</em>

<h2><em>there </em><em>for </em><em>the </em><em>equation</em><em> </em><em>has</em><em> </em><em>a </em><em>solution</em></h2>

<em>hope </em><em>it</em><em> helps</em>

<em>#</em><em>c</em><em>a</em><em>r</em><em>r</em><em>y</em><em> </em><em>on</em><em> learning</em>

<em>mark </em><em>me</em><em> as</em><em> brainlist</em><em> plss</em>

5 0
3 years ago
Other questions:
  • - 2x
    12·1 answer
  • Y=f(x)=2^x find f(x) when x=2
    15·2 answers
  • What is seven minus eight over three?
    12·2 answers
  • What property are
    7·1 answer
  • If l || m, m&lt; 7 = 5x - 4, and m&lt; 14 = 8x - 11, calculate m&lt; 16
    9·1 answer
  • How to find the length of the missing side
    14·2 answers
  • Find the sum 46 +47 +48 +49+...+138 + 139.
    9·2 answers
  • Solve for x 6X +7 equals 25
    5·2 answers
  • 1. Solve for x.<br> a) 25 + 10(12 - x) = 5(2x - 7)<br> b) 6 + 2x &gt; 20 or 8+XsO
    6·1 answer
  • What is the amout of matter in an object​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!