Answer:
answer will be an=3n+11
Step-by-step explanation:
because when we substitute them...it make sense.
<em>the</em><em> </em><em>rule</em><em> </em><em>is</em><em> </em><em>an</em><em>=</em><em>3</em><em>n</em><em>+</em><em>1</em><em>1</em>
<em>lets</em><em> </em><em>substitute</em><em>:</em>
<em>(</em><em>i</em><em>)</em><em>.</em><em>1</em><em>4</em><em>=</em><em>3</em><em>(</em><em>1</em><em>)</em><em>+</em><em>1</em><em>1</em>
<em>(</em><em>ii</em><em>)</em><em>1</em><em>7</em><em>=</em><em>3</em><em>(</em><em>2</em><em>)</em><em>+</em><em>1</em><em>1</em>
<em>(</em><em>iii</em><em>)</em><em>2</em><em>0</em><em>=</em><em>3</em><em>(</em><em>3</em><em>)</em><em>+</em><em>1</em><em>1</em>
<em>(</em><em>iv</em><em>)</em><em>2</em><em>3</em><em>=</em><em>3</em><em>(</em><em>4</em><em>)</em><em>+</em><em>1</em><em>1</em>
<em>it</em><em> </em><em>does</em><em> </em><em>make</em><em> </em><em>sense</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>I hope it will help u</em><em>.</em><em>.</em><em>.</em><em>.</em>
The temperature T in Kelvin (K) is equal to the temperature T in degrees Celsius (°C) plus 273.15:
T(K) = T(°C) + 273.15;
So, T(K) = -25 + 273.15;
T(K) = 248.15;
The correct answer is a.
AB and BC form a right angle at their point of intersection. This means AB is perpendicular to BC.
We are given the coordinates of points A and B, using which we can find the equation of the line for AB.
Slope of AB will be:

Using this slope and the point (2,1) we can write the equation for AB as:

The above equation is in slope intercept form. Thus the y-intercept of AB is 4/3.
Slope of AB is -1/6, so slope of BC would be 6. Using the slope 6 and coordinates of the point B, we can write the equation of BC as:
y - 1 = 6(x - 2)
y = 6x - 12 + 1
y = 6x - 11
Point C lies on the line y = 6x - 11. So if the y-coordinate of C is 13, we can write:
13 = 6x - 11
24 = 6x
x = 4
The x-coordinate of point C will be 4.
Therefore, the answers in correct order are:
4/3 , 6, -11, 4
coolio


so each term is ound by subtracting 13 from the previous term
an aritmetic sequence can be written as
were
is the nth term
is the first term
d is common difference, which can also be found by doing 
n=wich term
we know that
and we can find d
, 
so te general term is
which can also be expanded and written as 