Answer:
Each student ticket costs $8.33
Each adult ticket costs $15.34
Step-by-step explanation:
At Niagra High, Mr. Borton bought 4 student tickets and 2 adult tickets for the high school musical which cost $64. then Mrs. Gelvoria bought 3 student tickets and 3 adult tickets for the show and it cost her $72. How much are each type of tickets?
s = cost of each student ticket
a = cost of adult ticket
Our system of equations:
4s + 2a = 64
3s + 3a = 71
-3(4s + 2a = 64) ==> -12s - 6a = -192
2(3s + 3a = 71) ==> 6s + 6a = 142
-12s - 6a = -192
6s + 6a = 142
-6s = -50
/-6 /-6
s = $8.33 (the cost of each student ticket)
Now, let's find the cost of each adult ticket:
4s + 2a = 64
4(8.33) + 2a = 64
33.32 + 2a = 64
-33.32 -33.32
2a = 30.68
/2 /2
a = 15.34 (the cost of each adult ticket)
(x, y) ==> (8.33, 15.34)
Check your answer:
4s + 2a = 64
4(8.33) + 2(15.34) = 64
33.32 + 30.68 = 64
64 = 64
This statement is true
Hope this helps!
Find the absolute value vertex. In this case, the vertex for y=|x−5|y=|x-5| is (5,0)(5,0).
(5,0)(5,0)
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
(−∞,∞)(-∞,∞)
{x|x∈R}{x|x∈ℝ}
For each xx value, there is one yy value. Select few xx values from the domain. It would be more useful to select the values so that they are around the xx value of the absolute valuevertex.
xy3241506172
I cant see it is too blurrry
Hey!
----------------------------------------------------------------
We Know:
m∠AED = 34°
m∠EAD = 112°
----------------------------------------------------------------
Solution:
You notice 4 small triangles in both triangles. That shows that both triangles are the same.
The angles are the same for m∠BDC and m∠AED.
The angles are the same for m∠ADB and m∠EAD
----------------------------------------------------------------
Angles:
m∠BDC = 34°
m∠ADB = 112°
----------------------------------------------------------------
Congruent Angles:
m∠AED ≡ m∠BDC
m∠EAD ≡ m∠ADB
----------------------------------------------------------------
Hope This Helped! Good Luck!