Answer:
The answer to the question is;
The total potential energy of the mass on the spring when the mass is at either endpoint of its motion is 5.0255 Joules.
Explanation:
To answer the question, we note that the maximum speed is 2.30 m/s and the mass is 1.90 kg
Therefore the maximum kinetic energy of motion is given by
Kinetic Energy, KE =
Where,
m = Attached vibrating mass = 1.90 kg
v = velocity of the string = 2.3 m/s
Therefore Kinetic Energy, KE =
×1.9×2.3² = 5.0255 J
From the law of conservation of energy, we have the kinetic energy, during the cause of the vibration is converted to potential energy when the mass is at either endpoint of its motion
Therefore Potential Energy PE at end point = Kinetic Energy, KE at the middle of the motion
That is the total potential energy of the mass on the spring when the mass is at either endpoint of its motion is equal to the maximum kinetic energy.
Total PE = Maximum KE = 5.0255 J.
Answer:
Explanation:
Let the extension in the spring be x .
restoring force = weight of block
kx = mg
x = 
= 23.84 cm
b )
When the elevator is going upwards
Restoring force = mg + ma
k x₁ = 10.9 ( 9.8 + 1.89 )
x₁ = 28.44 cm
( y coordinate will be - ( 28.44 - 23.84 ) = - 4.6 cm )
c ) When the cable snaps , both elevator and block undergo free fall . In this case apparent g = 0
Since the spring is stretched by 28.44 cm , a restoring force continues to act on the block which is equal to
.2844 x 448
= 127.41 N
So a net acceleration a will act on the block
a = 127.41 / 10.9
= 11.68 m / s²
The block will undergo SHM with amplitude equal to 28.44 cm .
Part a)
At t = 0 the position of the object is given as

At t = 2

so displacement of the object is given as

so average speed is given as

Part b)
instantaneous speed is given by


now at t= 0

at t = 1


at t = 2

Part c)
Average acceleration is given as



Part d)
Now for instantaneous acceleration
As we know that

at t = 0

at t = 1

now we have

At t = 2 we have



<em>so above is the instantaneous accelerations</em>
Answer:
A. constructive interference.
Explanation:
brainliest please? :))
Answer:
<em>C</em>
Explanation:
<em>Tennis would belong to net wall games .</em>