Heat from burning fuel warms the walls of the firebox section of the furnace in
A. a hot-water heating system.
B. a hot-air heating system.
C. a compressor compartment.
D. an evaporation system.
Answer:
VAB = 20km/hr
Explanation:
<u>Given the following data;</u>
Velocity of car A, VA = 60km/hr
Velocity of car B, VB = 80km/hr
To find the relative velocity of B w.r.t A, VAB;
Since the two cars are moving in the same direction, we have;
VAB = VB - VA
Substituting into the equation, we have;
VAB = 80 - 60
<em>VAB = 20km/hr</em>
Therefore, the relative velocity of car B with respect to car A is 20 kilometers per hour.
The correct answer to the question is : D) Be moving at a constant velocity.
EXPLANATION:
As per Newton's first laws of motion, every body continues to be at state of rest or of uniform motion in a straight line unless and until it is compelled by some external unbalanced forces acting on it.
Hence, it is the unbalanced force which changes the state of rest or motion of a body. Balanced force is responsible for keeping the body to be either in static equilibrium or in dynamic equilibrium.
As per the options given in the question, the last one is true for an object under balanced forces.
Answer:
Explanation:
Time taken to accelerate to 28 m /s
= 28 / 2 = 14 s
a ) Total length of time in motion
= 14 + 41 + 5
= 60 s .
b )
Distance covered while accelerating
s = ut + 1/2 at²
= 0 + .5 x 2 x 14²
= 196 m .
Distance covered while moving in uniform motion
= 28 x 41
= 1148 m
distance covered while decelerating
v = u - at
0 = 28 - a x 5
a = 5.6 m / s²
v² = u² - 2 a s
0 = 28² - 2 x 5.6 x s
s = 28² / 2 x 5.6
= 70 m .
Total distance covered
= 196 + 1148 + 70
= 1414 m
total time taken = 60 s
average velocity
= 1414 / 60
= 23.56 m /s .
Answer:
Amplitude—distance between the resting position and the maximum displacement of the wave
Frequency—number of waves passing by a specific point per second
Period—time it takes for one wave cycle to complete
wavelength λ - the distance between adjacent identical parts of a wave, parallel to the direction of propagation.
Tension - described as the pulling force transmitted axially by the means of a string, a cable, chain, or similar one-dimensional continuous object, or by each end of a rod, truss member, or similar three-dimensional object