1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Umnica [9.8K]
3 years ago
9

Choose the correct simplification of the expression (-9a^3b^2c^10)^0

Mathematics
1 answer:
Flauer [41]3 years ago
8 0

Option C: 1 is the simplification of the expression \left(-9 a^{3} b^{2} c^{10}\right)^{0}

Explanation:

The given expression is \left(-9 a^{3} b^{2} c^{10}\right)^{0}

We need to simplify the given expression.

<u>Simplification:</u>

To simplify the given expression, let us apply the exponent rule, a^{0}=1 where a \neq 0

Thus, the the exponent rule a^{0}=1 means that any value (except zero) to the power of zero is equal to one.

Thus, the expression \left(-9 a^{3} b^{2} c^{10}\right)^{0} becomes,

\left(-9 a^{3} b^{2} c^{10}\right)^{0}=1

Therefore, the simplified expression is 1

Hence, Option C is the correct answer.

You might be interested in
Based on the graph of the line below, which describes the relationship between the value of the y-intercept and the
stepan [7]

Answer:

y intercept = 3

m = \frac{1}{3} --- slope

Step-by-step explanation:

Given

The attached graph

Required

Determine the slope and the y intercept

The y\ intercept is at the point where x = 0.

From the graph:

y = 3;\ when\ x = 0

Hence,

y intercept = 3

Next, we calculate the slope using:

m = \frac{y_1 - y_2}{x_1 - x_2}

Where:

(x_1,y_1) = (0,3)

(x_2,y_2) = (9,6)

So, we have:

m = \frac{3 - 6}{0 - 9}

m = \frac{-3}{- 9}

m = \frac{3}{9}

m = \frac{1}{3}

6 0
3 years ago
B-2-11. Find the inverse Laplace transform of s + 1/s(s^2 + s +1)
Aleksandr-060686 [28]

Answer:

\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=1-e^{-t/2}cos(\frac{\sqrt{3} }{2}t )+\frac{e^{-t/2}}{\sqrt{3} }sin(\frac{\sqrt{3} }{2}t)

Step-by-step explanation:

let's start by separating the fraction into two new smaller fractions

.

First,<em> s(s^2+s+1)</em> must be factorized the most, and it is already. Every factor will become the denominator of a new fraction.

\frac{s+1}{s(s^{2} + s +1)}=\frac{A}{s}+\frac{Bs+C}{s^{2}+s+1}

Where <em>A</em>, <em>B</em> and <em>C</em> are unknown constants. The numerator of <em>s</em> is a constant <em>A</em>, because <em>s</em> is linear, the numerator of <em>s^2+s+1</em> is a linear expression <em>Bs+C</em> because <em>s^2+s+1</em> is a quadratic expression.

Multiply both sides by the complete denominator:

[{s(s^{2} + s +1)]\frac{s+1}{s(s^{2} + s +1)}=[\frac{A}{s}+\frac{Bs+C}{s^{2}+s+1}][{s(s^{2} + s +1)]

Simplify, reorganize and compare every coefficient both sides:

s+1=A(s^2 + s +1)+(Bs+C)(s)\\\\s+1=As^{2}+As+A+Bs^{2}+Cs\\\\0s^{2}+1s^{1}+1s^{0}=(A+B)s^{2}+(A+C)s^{1}+As^{0}\\\\0=A+B\\1=A+C\\1=A

Solving the system, we find <em>A=1</em>, <em>B=-1</em>, <em>C=0</em>. Now:

\frac{s+1}{s(s^{2} + s +1)}=\frac{1}{s}+\frac{-1s+0}{s^{2}+s+1}=\frac{1}{s}-\frac{s}{s^{2}+s+1}

Then, we can solve the inverse Laplace transform with simplified expressions:

\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=\mathcal{L}^{-1}\{\frac{1}{s}-\frac{s}{s^{2}+s+1}\}=\mathcal{L}^{-1}\{\frac{1}{s}\}-\mathcal{L}^{-1}\{\frac{s}{s^{2}+s+1}\}

The first inverse Laplace transform has the formula:

\mathcal{L}^{-1}\{\frac{A}{s}\}=A\\ \\\mathcal{L}^{-1}\{\frac{1}{s}\}=1\\

For:

\mathcal{L}^{-1}\{-\frac{s}{s^{2}+s+1}\}

We have the formulas:

\mathcal{L}^{-1}\{\frac{s-a}{(s-a)^{2}+b^{2}}\}=e^{at}cos(bt)\\\\\mathcal{L}^{-1}\{\frac{b}{(s-a)^{2}+b^{2}}\}=e^{at}sin(bt)

We have to factorize the denominator:

-\frac{s}{s^{2}+s+1}=-\frac{s+1/2-1/2}{(s+1/2)^{2}+3/4}=-\frac{s+1/2}{(s+1/2)^{2}+3/4}+\frac{1/2}{(s+1/2)^{2}+3/4}

It means that:

\mathcal{L}^{-1}\{-\frac{s}{s^{2}+s+1}\}=\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}+\frac{1/2}{(s+1/2)^{2}+3/4}\}

\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}+\mathcal{L}^{-1}\{\frac{1/2}{(s+1/2)^{2}+3/4}\}\\\\\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}+\frac{1}{2} \mathcal{L}^{-1}\{\frac{1}{(s+1/2)^{2}+3/4}\}

So <em>a=-1/2</em> and <em>b=(√3)/2</em>. Then:

\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}=e^{-\frac{t}{2}}[cos\frac{\sqrt{3}t }{2}]\\\\\\\frac{1}{2}[\frac{2}{\sqrt{3} } ]\mathcal{L}^{-1}\{\frac{\sqrt{3}/2 }{(s+1/2)^{2}+3/4}\}=\frac{1}{\sqrt{3} } e^{-\frac{t}{2}}[sin\frac{\sqrt{3}t }{2}]

Finally:

\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=1-e^{-t/2}cos(\frac{\sqrt{3} }{2}t )+\frac{e^{-t/2}}{\sqrt{3} }sin(\frac{\sqrt{3} }{2}t)

7 0
4 years ago
PLS HELP ME IF RIGHT ILL MARK BRAINLIEST
trapecia [35]

Answer:

heyy.......

1. 3

2. 7

3. 5,6

4. 3,4

Step-by-step explanation:

note sure if good <em>khayden...........</em>

5 0
3 years ago
Add. Write your answer as a decimal.<br><br> 10.9+(−15.6)+2.1
Anni [7]

Answer:

−2.6

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
6x − 4 ; 2(3x − 8)
Deffense [45]
Not equivalent

Good luck on your math test
8 0
3 years ago
Read 2 more answers
Other questions:
  • What type of association does the following scatter plot represent?
    11·2 answers
  • What is the distance between points A and B?<br><br> units
    15·1 answer
  • A surf instructor has an initial fee of $12 and charges $8 per hour for lessons.
    11·2 answers
  • Sherri bought a beach towel that normally cost $44 but was on sale for half price she also bought a beach hat that was on sale f
    12·2 answers
  • Help needed ASAP will give BRAINLIEST
    8·2 answers
  • If the volume of a given cube is 729 cubic inches, what is the surface area of the
    5·2 answers
  • Question 3 help me and i will give brainlist
    5·2 answers
  • Help Me please will give Brainliest if right.
    6·1 answer
  • Solve the two-step equation.
    9·2 answers
  • Angles BAE and FAC are straight angles. What angle relationship best describes angles BAC and EAF?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!