Answer:
The box displacement after 6 seconds is 66 meters.
Explanation:
Let suppose that velocity given in statement represents the initial velocity of the box and, likewise, the box accelerates at constant rate. Then, the displacement of the object (
), in meters, can be determined by the following expression:
(1)
Where:
- Initial velocity, in meters per second.
- Time, in seconds.
- Acceleration, in meters per square second.
If we know that
,
and
, then the box displacement after 6 seconds is:

The box displacement after 6 seconds is 66 meters.
The minimum potential difference must be supplied by the ignition circuit to start a car is -1800 V
<u>Explanation:</u>
Given data,
E= 3 ×10 ⁶ Δx=0.06/100
We have to find the minimum potential difference
E= -ΔV/Δx
ΔV=- E × Δx
ΔV =-3 ×10 ⁶ . 0.06/100
ΔV=-1800 V
The minimum potential difference must be supplied by the ignition circuit to start a car is -1800 V
A because of the resistors are four in this options first option is multiplied by 4
Answer:
Explanation:
Given
Power Supplied
[/tex]
Efficiency of the motor 
and 



So, vacuum cleaner delivers a power of 
(a) The momentum of the proton is determined as 5.17 x 10⁻¹⁸ kgm/s.
(b) The speed of the proton is determined as 3.1 x 10⁹ m/s.
<h3>
Momentum of the proton</h3>
The momentum of the proton is calculated as follows;
K.E = ¹/₂mv²
where;
- m is mass of proton = 1.67 x 10⁻²⁷ kg
- v is speed of the proton = ?
<h3>Speed of the proton</h3>
v² = 2K.E/m
v² = (2 x 50 x 10⁹ x 1.602 x 10⁻¹⁹ J)/(1.67 x 10⁻²⁷)
v² = 9.6 x 10¹⁸
v = 3.1 x 10⁹ m/s
<h3>Momentum of the proton</h3>
P = mv = (1.67 x10⁻²⁷ x 3.1 x 10⁹) = 5.17 x 10⁻¹⁸ kgm/s
Learn more about momentum here: brainly.com/question/7538238
#SPJ4