To get x on its own, you times the 3 over to the other side so the 3 cancels out on the LHS.
~ x greater than or equal to -18
(C)
The electric field between plates is 4000V/m.
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles.
The value of the electric field has dimensions of force per unit charge. In the metre-kilogram-second and SI systems, the appropriate units are newtons per coulomb, equivalent to volts per metre.
The voltage between points A and B is
V=E.d
E =V/d (uniform E- field only)
where d is the distance from A to B, or the distance between the plates.
Given:
distance d = 3 cm
voltage V = 120 V
Electric field E = V/d
E = 120 V / 3cm
E = 40 V / 1 cm [ 1 cm = 1/100 m ]
E = 4000 V/m.
Learn more about Electric field here:
brainly.com/question/8971780
#SPJ4
Answer:
88 m/s
Explanation:
To solve the problem, we can use the following SUVAT equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
d is the distance covered
For the car in this problem, we have
d = 484 m is the stopping distance
v = 0 is the final velocity
is the acceleration
Solving for u, we find the initial velocity:

Answer:

Explanation:
The volume of the balloon can be find compared the force in each cases so:
reduce 25% from 74kg

So the net force uproad on the balloon is

Now the density of the both gases air and helium are different however the volume is the same change offcorss the mass so:






Answer: C
Frictional force
Explanation:
The description of the question above is an example of a circular motion.
For a car travelling in a curved path, the frictional force between the tyres and the road surface will provide the centripetal force.
Since the road is banked, and the cross section of the banked road is constructed like a ramp. The car drives transversely to the slope of the ramp, so that the wheels of one side of the car are lower than the wheels on the other side of the car, for cornering the banked road, the car will not rely only on the frictional force.
Therefore, the correct answer is option C - the frictional force.