I’m pretty positive that it’s A. Conduction. Just refer to the definition of it.
Answer:
The distance of stars and the earth can be averagely measured by using the knowledge of geometry to estimate the stellar parallax angle(p).
From the equation below, the stars distances can be calculated.
D = 1/p
Distance = 1/(parallax angle)
Stellar parallax can be used to determine the distance of stars from an observer, on the surface of the earth due to the motion of the observer. It is the relative or apparent angular displacement of the star, due to the displacement of the observer.
Explanation:
Parallax is the observed apparent change in the position of an object resulting from a change in the position of the observer. Specifically, in the case of astronomy it refers to the apparent displacement of a nearby star as seen from an observer on Earth.
The parallax of an object can be used to approximate the distance to an object using the formula:
D = 1/p
Where p is the parallax angle observed using geometry and D is the actual distance measured in parsecs. A parsec is defined as the distance at which an object has a parallax of 1 arcsecond. This distance is approximately 3.26 light years
Can you please give the phrases?
But, I'll help what I can.
First, he was the first to discover gravity. He was not bonked by the head by an apple, rather he watched an apple fall from a tree before he decided to explore gravity further.
He was also the first scientist to be knighted, which is a great honor, as you can expect.
Newton also developed The Three Laws of Motion. They are extremely important to physics and are considered some of the foundation for physics today.
He also discovered calculus, which is complex math that is very helpful to scientists today.
He also discovered the color spectrum using a glass prism, a dark room and window shade with a hole in it. He was able to project the color spectrum onto a piece of paper.
Those are the few I can think of now, but hope it helps!
Answer: a) the greater speed for the ball is getting with the large radius of the circle. b) 1.68* 10 ^3 m/s^2 c) 1.25*10^3 m/s^2
Explanation: In order to solve this problem firstly we have to consider that speed in a of the circular movement is directly the angular rotation multiply the radius of the circle so by this we found that the second radius get large speed.
Secondly to calculate the centripetal acceleration for the ball we have to considerer the relationship given by:
acceleration in a circular movement= ω^2*r
so
a1= (8.44 *2*π)^2*r1=1.68 *10^3 m/s^2
a2= (5.95*2*π)^2*r2=1.25*10^3 m/s^2