F = G m1*m2 / r^2 => [G] = [F]*[r]^2 /([m1]*[m2]) = N * m^2 / kg^2
That is one answer.
Also, you can use the fact that N = kg*m/s^2
[G] = kg * m / s^2 * m^2 / kg^2 = m^3 /(s^2 * kg)
The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4
Answer:

Explanation:
you mean deceleration right ? because the acceleration is 250m/s
Answer: 
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

Q = Heat absorbed= 16.7 kJ = 16700 J (1kJ=1000J)
m= mass of benzene = 225 g
c = specific heat capacity = 1.74 J/gK
Initial temperature of the water =
= 20.0°C = 293 k 
Final temperature of the water =
= ?
Change in temperature ,
Putting in the values, we get:


The final temperature will be 
<span>Newton's Third Law of Action-Reaction is that for each and every action that happens, there is an equal and opposite reaction to it. In the scenario of a roller coaster, this is when you push down on the seat of the roller coaster as it flies along and the seat pushes back against you.</span>