1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dolphi86 [110]
3 years ago
10

What kind of eruption is likely to occur in a volcano having magma that is low in silica

Physics
2 answers:
balu736 [363]3 years ago
5 0

Answer:

A slow eruption is likely to occur in a volcano having magma that is low in silica.

Explanation:

The magma flows out at a slow speed and with ease when the content of Silica is very low in it. The consistency of magma is made up of oxygen and silicon. On the other hand, if the content of silica is very high in the magma, the volcano erupts very explosively. Hence, it is to be noted that the amount and content of silica in the magma determine the flow of the magma.

Masja [62]3 years ago
3 0
A volcano erupts quietly if it's magma is low on silica. Low silica magma will be very thin, runny, and will flow easily, so the gases in the magma will bubble out gently. Hope this helps!:)
You might be interested in
If the wavelength is doubled what happens to the period​
Temka [501]

Answer: Wave speed may equal frequency*wavelength. Yet doubling the frequency only halves the wavelength; wave speed remains the same. To change the wave speed, the medium would have to be changed. 24. What are some simple steps I can take to protect my privacy online? Many people ... So if you double the frequency and keep the speed constant, the wavelength halves to give the same speed with the doubled frequency. 3.8k views ... The period of a note is 0.3 seconds and the speed of sound in air is 340 m/s. So if you double the frequency and keep the speed constant, the wavelength halves to give the same speed with the doubled frequency. What is the period of a wave if the wavelength is 100m and the speed is 200 m/s? ... If you move towards a light source, the wavelength decreases.

Explanation:

3 0
3 years ago
A gold wire that is 1.8 mm in diameter and 15 cm long carries a current of 260 mA. How many electrons per second pass a given cr
Musya8 [376]

Answer:

162500000.  

Explanation:

Given that

Diameter of the wire , d= 1.8 mm

The length of the wire ,L = 15 cm

Current ,I = 260 m A

The charge on the electron ,e= 1.6 x 10⁻¹⁹ C

We know that Current I is given as

I=\dfrac{q}{t}

I=Current

q=Charge

t=time

q= I t

q= 260 m t

The total number of electron = n

q= n e

n=\dfrac{260\times 10^{-3}\ t}{1.6\times 10^{-9}}

n=162500000 t

\dfrac{n}{t}=16250000

The number of electron passe per second will be 162500000.

4 0
3 years ago
Una prenda de 320gramos de ropa gira en el interior de una lavadora si dicha lavadora tiene 40 cm y gira con una frecuencia de 4
Nitella [24]

Answer:

Período del tambor: T = 0.25\,s, fuerza sobre la prenda: F \approx 80.852\,N, velocidad lineal del tambor: v \approx 10.053\,\frac{m}{s}, velocidad angular del tambor: \omega \approx 25.133\,\frac{rad}{s}.

Explanation:

La expresión tiene un error por omisión, su forma correcta queda descrita a continuación:

<em>"Una prenda de 320 gramos de ropa gira en el interior de una lavadora si dicha lavadora tiene un radio de 40 centímetros y gira con una frecuencia de 4 hertz. Halle </em><em>a)</em><em> el período, </em><em>b) </em><em>la velocidad angular, </em><em>c) </em><em>la fuerza con la que gira la prenda y </em><em>d) </em><em>la velocidad lineal de la lavadora."</em>

El tambor gira a velocidad angular constante (\omega), en radianes por segundo, lo cual significa que la prenda experimenta una aceleración centrífuga (a), en metros por segundo al cuadrado. En primer lugar, calculamos el período de rotación del tambor (T), en segundos:

T = \frac{1}{f} (1)

Donde f es la frecuencia, en hertz.

(f = 4\,hz)

T = \frac{1}{4\,hz}

T = 0.25\,s

Ahora determinamos la fuerza aplicada sobre la prenda (F), en newtons:

F = m\cdot a (2)

F = \frac{4\pi^{2}\cdot m \cdot r}{T^{2}} (2b)

Donde:

m - Masa de la prenda, en kilogramos.

r - Radio interior del tambor, en metros.

(m = 0.32\,kg, r = 0.4\,m, T = 0.25\,s)

F = \frac{4\pi^{2}\cdot (0.32\,kg)\cdot (0.4\,m)}{(0.25\,s)^{2}}

F \approx 80.852\,N

La velocidad lineal de la lavadora es:

v = \frac{2\pi\cdot r}{T} (3)

(r = 0.4\,m, T = 0.25\,s)

v = \frac{2\pi\cdot (0.4\,m)}{0.25\,s}

v \approx 10.053\,\frac{m}{s}

Y la velocidad angular del tambor de la lavadora:

\omega = \frac{2\pi}{T}

(T = 0.25\,s)

\omega = \frac{2\pi}{0.25\,s}

\omega \approx 25.133\,\frac{rad}{s}

7 0
2 years ago
Block A has a mass of 0.5kg, and block B has a mass of 2kg. Block is is released at a height of 0.75 meters above B. The coeffic
VikaD [51]

Answer:

0.075 m

Explanation:

The picture of the problem is missing: find it in attachment.

At first, block A is released at a distance of

h = 0.75 m

above block B. According to the law of conservation of energy, its initial potential energy is converted into kinetic energy, so we can write:

m_Agh=\frac{1}{2}m_Av_A^2

where

g=9.8 m/s^2 is the acceleration due to gravity

m_A=0.5 kg is the mass of the block

v_A is the speed of the block A just before touching block B

Solving for the speed,

v_A=\sqrt{2gh}=\sqrt{2(9.8)(0.75)}=3.83 m/s

Then, block A collides with block B. The coefficient of restitution in the collision is given by:

e=\frac{v'_B-v'_A}{v_A-v_B}

where:

e = 0.7 is the coefficient of restitution in this case

v_B' is the final velocity of block B

v_A' is the final velocity of block A

v_A=3.83 m/s

v_B=0 is the initial velocity of block B

Solving,

v_B'-v_A'=e(v_A-v_B)=0.7(3.83)=2.68 m/s

Re-arranging it,

v_A'=v_B'-2.68 (1)

Also, the total momentum must be conserved, so we can write:

m_A v_A + m_B v_B = m_A v'_A + m_B v'_B

where

m_B=2 kg

And substituting (1) and all the other values,

m_A v_A = m_A (v_B'-2.68) + m_B v_B'\\v_B' = \frac{m_A v_A +2.68 m_A}{m_A + m_B}=1.30 m/s

This is the velocity of block B after the collision. Then, its kinetic energy is converted into elastic potential energy of the spring when it comes to rest, according to

\frac{1}{2}m_B v_B'^2 = \frac{1}{2}kx^2

where

k = 600 N/m is the spring constant

x is the compression of the spring

And solving for x,

x=\sqrt{\frac{mv^2}{k}}=\sqrt{\frac{(2)(1.30)^2}{600}}=0.075 m

5 0
3 years ago
A swimmer bounces straight up from a diving board and falls feet first into a pool. She starts with a velocity of 4.00 m/s, and
garri49 [273]

Answer:

(a) t = 1.14 s

(b) h = 0.82 m

(c) vf = 7.17 m/s

Explanation:

(b)

Considering the upward motion, we apply the third equation of motion:

2gh = v_f^2 - v_i^2

where,

g = - 9.8 m/s² (-ve sign for upward motion)

h = max height reached = ?

vf = final speed = 0 m/s

vi = initial speed = 4 m/s

Therefore,

(2)(9.8\ m/s^2)h = (0\ m/s)^2-(4\ m/s)^2\\

<u>h = 0.82 m</u>

Now, for the time in air during upward motion we use first equation of motion:

v_f = v_i + gt_1\\0\ m/s = 4\ m/s + (-9.8\ m/s^2)t_1\\t_1 = 0.41\ s

(c)

Now we will consider the downward motion and use the third equation of motion:

2gh = v_f^2-v_i^2

where,

h = total height = 0.82 m + 1.8 m = 2.62 m

vi = initial speed = 0 m/s

g = 9.8 m/s²

vf = final speed = ?

Therefore,

2(9.8\ m/s^2)(2.62\ m) = v_f^2 - (0\ m/s)^2\\

<u>vf = 7.17 m/s</u>

Now, for the time in air during downward motion we use the first equation of motion:

v_f = v_i + gt_1\\7.17\ m/s = 0\ m/s + (9.8\ m/s^2)t_2\\t_2 = 0.73\ s

(a)

Total Time of Flight = t = t₁ + t₂

t = 0.41 s + 0.73 s

<u>t = 1.14 s</u>

7 0
2 years ago
Other questions:
  • A person holding a 15.0 kg containing one 50.0 g bullet is riding on a train that is traveling at 75.0 km/h east. If the man fir
    5·1 answer
  • Problem 2: A rock is dropped from a cliff. If it falls for 10 seconds, what is its displacement?​
    7·1 answer
  • 2. You are on your skateboard doing 2.4 m/s when you start to accelerate at 0.6 m/s down a hill for 20.5. How fard
    14·1 answer
  • Why are water storage tanks usually placed on high towers
    7·2 answers
  • Consider a nuclear power plant, its transmission lines, and everything it provides energy to as a closed system. Which of the fo
    5·1 answer
  • Could I get help plz
    5·1 answer
  • What other issues, besides addiction, might go along with overuse of phones?
    9·1 answer
  • A crossbow is fired horizontally off a cliff with an initial velocity of 15 m/s. If the arrow takes 4s to hit the ground, what i
    13·1 answer
  • Suppose a 4,000-kg elephant is hoisted 20 m above Earth’s surface. Use a calculator and follow the steps below to find the eleph
    6·1 answer
  • Might it be possible to explain the interaction of the rod and pieces of paper as a gravitational interaction? please explain wh
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!