1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zzz [600]
3 years ago
9

Simplify (6x^-2)^2(0.5x)^4 show work please

Mathematics
2 answers:
tester [92]3 years ago
4 0
(6x^-2)^2(0.5x)^4 = (6^2)(x^-2(2))(1/2)^4(x^4) = 36x^-4(1/16x^4) = (36/16)x^(-4+4) = 9/4
Darina [25.2K]3 years ago
3 0

Answer:

(6x^{-2})^2(0.5x)^4=\frac{9}{4}

Step-by-step explanation:

The given equation is:

(6x^{-2})^2(0.5x)^4

Simplifying the above given equation, we get

=(36x^{-4})(\frac{1}{2}x)^4

=36x^{-4}(\frac{1}{16})x^4

=\frac{36}{16}x^{-4+4}

=\frac{36}{16}

=\frac{9}{4}

Thus, (6x^{-2})^2(0.5x)^4=\frac{9}{4}

which is the requires simplified form.

You might be interested in
For each vector field f⃗ (x,y,z), compute the curl of f⃗ and, if possible, find a function f(x,y,z) so that f⃗ =∇f. if no such f
butalik [34]

\vec f(x,y,z)=(2yze^{2xyz}+4z^2\cos(xz^2))\,\vec\imath+2xze^{2xyz}\,\vec\jmath+(2xye^{2xyz}+8xz\cos(xz^2))\,\vec k

Let

\vec f=f_1\,\vec\imath+f_2\,\vec\jmath+f_3\,\vec k

The curl is

\nabla\cdot\vec f=(\partial_x\,\vec\imath+\partial_y\,\vec\jmath+\partial_z\,\vec k)\times(f_1\,\vec\imath+f_2\,\vec\jmath+f_3\,\vec k)

where \partial_\xi denotes the partial derivative operator with respect to \xi. Recall that

\vec\imath\times\vec\jmath=\vec k

\vec\jmath\times\vec k=\vec i

\vec k\times\vec\imath=\vec\jmath

and that for any two vectors \vec a and \vec b, \vec a\times\vec b=-\vec b\times\vec a, and \vec a\times\vec a=\vec0.

The cross product reduces to

\nabla\times\vec f=(\partial_yf_3-\partial_zf_2)\,\vec\imath+(\partial_xf_3-\partial_zf_1)\,\vec\jmath+(\partial_xf_2-\partial_yf_1)\,\vec k

When you compute the partial derivatives, you'll find that all the components reduce to 0 and

\nabla\times\vec f=\vec0

which means \vec f is indeed conservative and we can find f.

Integrate both sides of

\dfrac{\partial f}{\partial y}=2xze^{2xyz}

with respect to y and

\implies f(x,y,z)=e^{2xyz}+g(x,z)

Differentiate both sides with respect to x and

\dfrac{\partial f}{\partial x}=\dfrac{\partial(e^{2xyz})}{\partial x}+\dfrac{\partial g}{\partial x}

2yze^{2xyz}+4z^2\cos(xz^2)=2yze^{2xyz}+\dfrac{\partial g}{\partial x}

4z^2\cos(xz^2)=\dfrac{\partial g}{\partial x}

\implies g(x,z)=4\sin(xz^2)+h(z)

Now

f(x,y,z)=e^{2xyz}+4\sin(xz^2)+h(z)

and differentiating with respect to z gives

\dfrac{\partial f}{\partial z}=\dfrac{\partial(e^{2xyz}+4\sin(xz^2))}{\partial z}+\dfrac{\mathrm dh}{\mathrm dz}

2xye^{2xyz}+8xz\cos(xz^2)=2xye^{2xyz}+8xz\cos(xz^2)+\dfrac{\mathrm dh}{\mathrm dz}

\dfrac{\mathrm dh}{\mathrm dz}=0

\implies h(z)=C

for some constant C. So

f(x,y,z)=e^{2xyz}+4\sin(xz^2)+C

3 0
4 years ago
Solve<br> 2((3+-1)^2 - -1)
Sunny_sXe [5.5K]

Answer:

10 is correct

Step-by-step explanation:

2(4+1)

2(5)

=10

5 0
3 years ago
Read 2 more answers
What is the factored form of x2 – x – 2?
o-na [289]
(X-2)(x+1)

The first one












6 0
3 years ago
Read 2 more answers
Giving brainliest !!!!
Leona [35]

Answer:

p = 42.6 (Rounded up)

I am unsure if you need an explanation.

5 0
3 years ago
I need help with this question
Jet001 [13]

Answer:

286 Degrees

Step-by-step explanation:

A circle is 360 degrees, and from the question, we know that it is asking for ACB, so it would be 360 - 74, which is 286 degrees

Brainliest Maybe?

8 0
3 years ago
Read 2 more answers
Other questions:
  • 1. Find the domain of the given function. (1 point)
    8·1 answer
  • Solve for x. x/2 = -7 x = -14 x = -7/2 x = -2/7
    15·1 answer
  • What is the probability that a warner bros movie is a comedy?
    10·2 answers
  • Solve for x in the equation 2x2-5x+1=3
    6·1 answer
  • 4.
    14·1 answer
  • Multiply 1/4 how many times​
    13·1 answer
  • A rectangle has a length of 4 centimeters and a width of 7 centimeters. What is the effect on the perimeter when the dimensions
    8·1 answer
  • Which graph represents the function?<br><br> f(x)=1x+1−2<br><br> IS MY ANSWER CORRECT???
    7·2 answers
  • Answer the question for 10 points
    10·1 answer
  • 24/48 as a whole number
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!