CH3 is a methyl radical, which is formed by removing the hydrogen atom from methane, so the hybridization is SP^3
Answer:
The pH of the solution is 4.60.
Explanation:
The pH gives us an idea of the acidity or basicity of a solution. More precisely, it indicates the concentration of H30 + ions present in said solution. The pH scale ranges from 0 to 14: from 0 to 7 corresponds to acid solutions, 7 neutral solutions and between 7 and 14 basic solutions. It is calculated as:
pH = -log (H30 +)
pH= -log (2,5 x 10-5)
<em>pH=4.60</em>
Wavelength = 434nm = 434 x 10⁻⁹m
planck's constant = <span>h= 6.626 x 10 ⁻³⁴ J
E =?
by using the formula;
E = hc /</span>λ
value for c is 3 x 10⁸ m/s
E = (6.626 x 10 ⁻³⁴ J)(3 x 10⁸ m/s) / 434 x 10⁻⁹m
E = 1.9878 x 10⁻²⁵ / 434 x 10⁻⁹m
E = 4.58 x 10⁻¹⁹ joules
The specific heat is the amount of heat per unit mass required to raise the temperature to 1 degree Celsius. (This is from google)
Answer:
14.5 g silver
Explanation:
This is a problem using the stoichiometry of the reaction. First thing we need is the balanced equation:
Zn + 2 AgNO3 ----------------------- 2 Ag + Zn(NO3)2
We know that 14.6 g of Zn did not reacted, then we can calculate the amount of Zn reacted and do the calculation given the above reaction.
amount Zn reacted: 19.0 -14.6 g Zn = 4.4 g Zn
atomic weight of Zn: 65.37 g/mol
mol Zn reacted: 4.4 g Zn x ( 1 mol Zn/ 65.37 g Zn) = 0.067 mol Zn
We know from the balanced equation that moles of Ag are produced from 1 mol Zn therefore the mol of Ag produced are:
0.067 mol Zn x 2 mol Ag/ 1mol Zn = 0.135 mol Ag
and the mass of silver then will be given by multiplying by the atomic weight of silver:
0.135 mol Ag x 107.9 g/mol = 14.5 g Ag