Answer:
Range = {-1, 1, 3}
Step-by-step explanation:
<u><em>The question asks for the range.</em></u>
The function given is

The domain is the set of 3 numbers:
Domain = {4,6,8}
We need to find the range.
First, the range is the set of all y-values for which the function is defined.
When we will be given the domain with a set of numbers, the range would be the numbers that we get when we evaluate the the function at those numbers.
So, we evaluate the function (y-values) at x = 4,6, and 8.
At x = 4:

At x = 6:

At x = 8:

Thus, the range is:
Range = {-1, 1, 3}
<h3>I hope it is helpful for you </h3>
Answer:
John Roberts must serve a minimum of 12, 543 days to surpass John Mrshall's record of justice.
Step-by-step explanation:
John Marshall = 2079 + 10, 463 = 12, 542 days
Now, we have to add 1 more day to pass John Marshall because if we do not, we would only be on the same level as John Marshall and NOT EXCEEDING him.
Line perpendicular to a given line is = 1/m
To find m, use m =y2-y1/x2-x1 formula
m = (8-(-3))/(-7-4)
m = 11/-11,
m = -1
Use y= mx+c to find equation of line
Plug in a pair of values,
-3= -1(4)+ c
c= 1
Thus, equation is:
y = -x+1
Equation of line perpendicular to this line is:
y= x+1
Hope it helps :)
Pls mark it as Brainliest :)
Answer:
x^2+8x+<u>1</u><u>6</u><u>=</u><u>(</u><u>x-4</u><u>)</u><u>^</u><u>2</u>
<em><u>EXPLANATION</u></em><em><u>:</u></em>
<u>(</u><u>a</u><u>+</u><u>b</u><u>)</u><u>^</u><u>2</u><u>=</u><u>a2</u><u>+</u><u>2</u><u>.</u><u>a</u><u>.</u><u>b</u><u>+</u><u>b2</u>
<u>we</u><u> </u><u>have</u><u> </u><u>to</u><u> </u><u>break</u><u> </u><u>the</u><u> </u><u>middle</u><u> </u><u>term</u><u> </u><u>i</u><u>n</u><u> </u><u>2</u><u>a</u><u>b</u><u> </u><u>here</u><u> </u><u>a</u><u> </u><u>is</u><u> </u><u>x</u><u> </u><u>then</u><u> </u><u>2</u><u>x</u><u>b</u><u>=</u><u>8</u><u>x</u><u>,</u><u> </u><u>=</u><u>></u><u> </u><u>b</u><u>=</u><u>4</u><u>,</u><u> </u><u>but</u><u> </u><u>value</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>and</u><u> </u><u>b</u><u> </u><u>to</u><u> </u><u>get</u><u> </u><u>the</u><u> </u><u>req</u><u>uired</u><u> </u><u>equation</u><u>!</u>