Molality=mol/kg
342/171
=2m
Hope this helped :)
Air is mainly composed of N2 (78%), O2 (21%) and other trace gases. Now, the total pressure of air is the sum of the partial pressures of the constituent gases. The partial pressure of each gas, for example say O2, can be expressed as:
p(O2) = mole fraction of O2 * P(total, air) ----(1)
Thus, the partial pressure is directly proportional to the total pressure. If we consider a sealed container then, as the temperature of air increases so will its pressure. Based on equation (1) an increase in the pressure of air should also increase the partial pressure of oxygen.
<u>Answer:</u> The force that must be applied is 15 N.
<u>Explanation:</u>
Force exerted on the object is defined as the product of mass of the object and the acceleration of the object.
Mathematically,

where,
F = force exerted = ?
m = mass of the object = 3 kg
a = acceleration of the object = 
Putting values in above equation, we get:

Hence, the force that must be applied is 15 N.
In the so called rain shadow effect we have interaction between all of the four major Earth spheres. When we have a coastal region where there's a high mountain range, the part of the mountain that is facing the sea will differ a lot from the part of the mountain that is on the other side. The water from the sea evaporates. The water vapor makes the air wet. The warm and wet air masses from the sea will come to the coastline, once they reach the mountain they will start to accumulate as they can not pass through it. As they accumulate rainfall appears. The rainfall contributes to a lush vegetation on this side of the mountain (windward side). The rain shadow effect appears on the leeward side of the mountain, and it mostly gets dry, strong, downward winds. These conditions result in drier climate, much less vegetation, and much increased erosion. Thus we can easily see that we have in this case interaction between the hydrosphere (the sea and the rainfall), the geosphere (the ground, soil, rocks), biosphere (the vegetation), and atmosphere (the winds, the clouds).