Answer:
Iodide> Bromide > chloride > flouride
Explanation:
During a nucleophilic substitution reaction, a nucleophilie replaces another in a molecule.
This process may occur via an ionic mechanism (SN1) or via a concerted mechanism (SN2).
In either case, the ease of departure of the leaving group is determined by the nature of the C-X bond. The stronger the C-X bond, the worse the leaving group will be in nucleophilic substitution. The order of strength of C-X bond is F>Cl>Br>I.
Hence, iodine displays the weakest C-X bond strength and it is thus, a very good leaving group in nucleophillic substitution while fluorine displays a very high C-X bond strength hence it is a bad leaving group in nucleophilic substitution.
Therefore, the ease of the use of halide ions as leaving groups follows the trend; Iodide> Bromide > chloride > flouride
Hope this helps! chemical test is a qualitative or quantitative procedure designed to identify, quantify, or characterise a chemical compound or chemical group. It is used to see if the driver had presence of alcohol or drugs in their system
A push or pull is your answer
Answer:
x = 0.324 M s⁻¹
Explanation:
Equation for the reaction can be represented as:
2 NO(g) + Cl₂ (g) ⇄ 2NOCl (g)
Rate = K [NO]² [Cl₂]
Concentration = 
from the question; their number of moles are constant since the species are quite alike.
As such; if Concentration varies inversely proportional to the volume;
we have: Concentration ∝ 
Concentration = 
Similarly; the Rate can now be expressed as:
Rate = K [NO]² [Cl₂]
Rate =

Rate = 
We were also told that the in the reaction, the gaseous system has an initial volume of 3.00 L and rate of formation of 0.0120 Ms⁻¹
So we can have:
0.0120 = 
0.0120 =
-----Equation (1)
Now; the new rate of formation when the volume of the system decreased to 1.00 L can now be calculated as:
x = 
x = 1 ------- Equation (2)
Dividing equation (2) with equation (1); we have:
= 
= 
x = 0.0120 × 27
x = 0.324 M s⁻¹
∴ the new rate of formation of NOCl = 0.324 M s⁻¹
Answer:
There are two phase changes where the heat energy is released: Condensation: When gas condenses to liquid the quantity of energy converted from chemical to heat is called the Heat of Vaporization or Δ Hvap .