<h3>
Answer: 0</h3>
=====================================================
Explanation:
The term "variant" means "it changes" or "it moves location".
So "invariant" means it stays fixed in place.
The translation vector
is the same as writing the rule
. It says to shift every (x,y) point 1 unit to the right and 3 units up. The key to this is the "every". There isn't a point left out that the translation doesn't touch. No points stay fixed in place. <u>There are no invariant points</u>.
In contrast, if we were to do a dilation, then the invariant point is the center of the dilation. Everything either shrinks or enlarges with respect to this fixed center point. Another example would be a rotation where the center of rotation stays fixed. Unfortunately, translations do not have this property of having an invariant fixed point.
Answer:
i cant help with that cause i have no way of drawing
Step-by-step explanation:
Answer:
A² - 6A + 11 I = ![\left[\begin{array}{ccc}0&0\\0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%5C%5C0%260%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given the matrix
![A=\left[\begin{array}{ccc}2&3\\-1&4\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C-1%264%5Cend%7Barray%7D%5Cright%5D)
Calculate A² - 6A + 11 I
![A^2 = A*A= \left[\begin{array}{ccc}2&3\\-1&4\end{array}\right] *\left[\begin{array}{ccc}2&3\\-1&4\end{array}\right] = \left[\begin{array}{ccc}2*2-3*1&2*3+3*4\\-1*2-4*1&-1*3+4*4\end{array}\right] =\left[\begin{array}{ccc}1&18\\-6&13\end{array}\right]](https://tex.z-dn.net/?f=A%5E2%20%3D%20A%2AA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C-1%264%5Cend%7Barray%7D%5Cright%5D%20%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C-1%264%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%2A2-3%2A1%262%2A3%2B3%2A4%5C%5C-1%2A2-4%2A1%26-1%2A3%2B4%2A4%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2618%5C%5C-6%2613%5Cend%7Barray%7D%5Cright%5D)
![6A=6*\left[\begin{array}{ccc}2&3\\-1&4\end{array}\right] =\left[\begin{array}{ccc}12&18\\-6&24\end{array}\right]](https://tex.z-dn.net/?f=6A%3D6%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C-1%264%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D12%2618%5C%5C-6%2624%5Cend%7Barray%7D%5Cright%5D)
![11 I = 11 * \left[\begin{array}{ccc}1&0\\0&1\end{array}\right] =\left[\begin{array}{ccc}11&0\\0&11\end{array}\right]](https://tex.z-dn.net/?f=11%20I%20%3D%2011%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%260%5C%5C0%2611%5Cend%7Barray%7D%5Cright%5D)
∴ A² - 6A + 11 I = ![\left[\begin{array}{ccc}1&18\\-6&13\end{array}\right] -\left[\begin{array}{ccc}12&18\\-6&24\end{array}\right] +\left[\begin{array}{ccc}11&0\\0&11\end{array}\right] =\left[\begin{array}{ccc}0&0\\0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2618%5C%5C-6%2613%5Cend%7Barray%7D%5Cright%5D%20-%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D12%2618%5C%5C-6%2624%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%260%5C%5C0%2611%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%5C%5C0%260%5Cend%7Barray%7D%5Cright%5D)
Answer:
.9 or 90%
.1 or 10%
Step-by-step explanation:
E= Exam
P=Paper
E= .71
P= .45
E∩P=.26
A.) E∪P=?
E∪P= E+P-E∩P
.71+.45-.26= .9
B.) E'∩P' = (E∪P)'
(E∪P)' = 1-.9 = .1
ANSWER
The sphere is 10762 cubic centimeters bigger than the cube.
EXPLANATION
We want to find the difference in the volumes of the sphere and the cube.
To do this, we have to find the volumes of the sphere and cube and subtract that of the cube from the sphere.
The volume of a sphere is given as:

where r = radius
The radius of the sphere is 15 centimeters. Therefore, the volume of the sphere is:

The volume of a cube is given as:

where s = length of the side
The length of the side of the cube is 15 centimeters. Therefore, the volume of the cube is:

Therefore, the difference in the volumes of the sphere and cube is:

Therefore, the sphere is 10762 cubic centimeters bigger than the cube.