<h3>Factor –3y – 18 is: -3(y + 6)</h3>
<em><u>Solution:</u></em>
Given that we have to factor -3y - 18
Use the distributive property,
a(b + c) = ab + bc
From given,
-3y - 18
Factor out the greatest common factor of 3 and 18
The factors of 3 are: 1, 3
The factors of 18 are: 1, 2, 3, 6, 9, 18
Then the greatest common factor is 3
Factot out 3 from given expression
-3y - 18 = 3( - y - 6)
Or else we can rewrite as,
-3y - 18 = -3(y + 6)
Thus the given expression is factored
Answer:
The perimeter of a circle can be found by using the followinfg expression
P = 2*π*r
where
π = 3.14
r = radius of the circle = half the diameter of the circle
In this case, if we are given the radius, we use
P = 2*π*r
If we are given the diameter, we use
P = 2*π*(D/2) = π*D
1) 27in
radius = 27in
P = 2*(3.14)*(27 in) = 169.56 in
diameter = 27 in
P = (3.14)*(27 in) = 84.78 in
2) 79 in
radius = 79 in
P = 2*(3.14)*(79 in) = 496.12 in
diameter = 79 in
P = (3.14)*(79 in) = 248.06 in
3) 1809 in
radius = 1809 in
P = 2*(3.14)*(1809 in) = 11360.52 in
diameter = 1809 in
P = (3.14)*(1809 in) = 5680.26 in
4) 152 in
radius = 152 in
P = 2*(3.14)*(152 in) = 954.56 in
diameter = 152 in
P = (3.14)*(152 in) = 477.28 in
We first do:
∅ = sin⁻¹(0.3)
∅ = 17.5°
To go into the second quadrant, we add 90°.
∅ = 17.5 + 90
= 107.5°
The answer is A.
Answer:
I found two different solutions. Hope one of them help!
1. x = -1/3 = -0.333
2. x = 5/2 = 2.500
Step-by-step explanation:
13 ± √ 289
x = ——————
12
Can √ 289 be simplified ?
Yes! The prime factorization of 289 is
17•17
To be able to remove something from under the radical, there have to be 2 instances of it (because we are taking a square i.e. second root).
√ 289 = √ 17•17 =
± 17 • √ 1 =
± 17
So now we are looking at:
x = ( 13 ± 17) / 12
Two real solutions:
x =(13+√289)/12=(13+17)/12= 2.500
or
x =(13-√289)/12=(13-17)/12= -0.333
Two solutions were found :
x = -1/3 = -0.333
x = 5/2 = 2.500
Answer:
1423/33
Step-by-step explanation:
Let x = 43.121212.........
Two digits are repeating after decimal point. So multiply both sides by 100
100x = 4312.1212 --------------(I)
<u> x = 43.1212 </u> -----------(II) { subtract equation (II) form (I)}
99x = 4269
x= 4269/99 {reduce to simplest form by giving by 3rd table}
x = 1423/33